首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ecological Complexity》2008,5(2):132-139
Understanding the processes underlying food-web structure and organization remains one of the major tasks of ecology. While first attempts were mostly based on niche theory, with body size of species imposing a hierarchical structure for consumer species, it has been recently suggested that phylogenetic constraints may be more fundamental to understand who eats whom in natural communities. Models of food-web structure built on basic evolutionary assumptions are able to adequately reproduce the topology of real food-webs. Here, we analyze different implications of phylogenetic constraints on trophic structure, and present preliminary results. Our exploration of the relationship between trophic and taxonomic similarity in food-webs shows that phylogeny and trophic structure are closely linked. Interestingly, the relationship is stronger for trophic similarity between prey (similarity measured by shared predators species, or predatory similarity) than between consumer species (similarity measured by shared prey species, or dietary similarity). When relating body mass of prey and predators, slopes of major axis regressions within taxonomic groups differ markedly from the global pattern; similar differences between taxonomic levels appear when exploring the relationship between body mass of predators and the range in body mass of their prey, and vice versa. These results are important to understand how evolutionary processes shaping body sizes can affect food-web structure.  相似文献   

2.
Global environmental changes threaten biodiversity and the interactions between species, and food-web approaches are being used increasingly to measure their community-wide impacts. Here we review how parasitoid–host food webs affect biological control, and how their structure responds to environmental change. We find that land-use intensification tends to produce webs with low complexity and uneven interaction strengths. Dispersal, spatial arrangement of habitats, the species pool and community differences across habitats have all been found to determine how webs respond to landscape structure, though clear effects of landscape complexity on web structure remain elusive. The invasibility of web structures and response of food webs to invasion have been the subject of theoretical and empirical work respectively, and nutrient enrichment has been widely studied in the food-web literature, potentially driving dynamic instability and altering biomass ratios of different trophic levels. Combined with food-web changes observed under climate change, these responses of food webs could signal changes to biological control, though there have been surprisingly few studies linking food-web structure to pest control, and these have produced mixed results. However, there is strong potential for food-web approaches to add value to biological control research, as parasitoid–host webs have been used to predict indirect effects among hosts that share enemies, to study non-target effects of biological control agents and to quantify the use of alternative prey resources by enemies. Future work is needed to link food-web interactions with evolutionary responses to the environment and predator–prey interactions, while incorporating recent advances in predator biodiversity research. This holistic understanding of agroecosystem responses and functioning, made possible by food-web approaches, may hold the key to better management of biological control in changing environments.  相似文献   

3.
Here, we synthesize a number of recent empirical and theoretical papers to argue that food-web dynamics are characterized by high amounts of spatial and temporal variability and that organisms respond predictably, via behaviour, to these changing conditions. Such behavioural responses on the landscape drive a highly adaptive food-web structure in space and time. Empirical evidence suggests that underlying attributes of food webs are potentially scale-invariant such that food webs are characterized by hump-shaped trophic structures with fast and slow pathways that repeat at different resolutions within the food web. We place these empirical patterns within the context of recent food-web theory to show that adaptable food-web structure confers stability to an assemblage of interacting organisms in a variable world. Finally, we show that recent food-web analyses agree with two of the major predictions of this theory. We argue that the next major frontier in food-web theory and applied food-web ecology must consider the influence of variability on food-web structure.  相似文献   

4.
Ecologists have found many patterns in food-web structure. Some, like the constant connectance hypothesis, lack definitive explanatory mechanisms. In response, we investigated whether community assembly mechanisms could explain why trophic complexity consistently scales with species richness among ecosystems. We analyzed how food-web structure developed during the community assembly recorded in Simberloff and Wilson's classic biogeography experiment. Using their arthropod surveys, we constructed six time series of food-webs from pre- and post-defaunation censuses of six experimental islands, and synthesized trophic information for 250 species from the literature and expert sources. We found that the fraction of specialist species increased and the fraction of generalists decreased during food-web assembly. Directed connectance initially declined over time, despite an increase in species richness, but eventually leveled off as predicted by the constant connectance hypothesis of diversity-complexity scaling. The initial decline was explained by later colonization by trophic specialists, probably due to limited resource availability during early colonization. Late-colonizing super-generalists maintained constant connectance at later dates. This relationship between colonization success and trophic breadth helps explain food-web patterns and corroborates assertions that community assembly is systematically influenced by species' trophic breadths.  相似文献   

5.
Food webs of habitats as diverse as lakes or desert valleys are known to exhibit common "food-web patterns", but the detailed mechanisms generating these structures have remained unclear. By employing a stochastic, dynamical model, we show that many aspects of the structure of predatory food webs can be understood as the traces of an evolutionary history where newly evolving species avoid direct competition with their relatives. The tendency to avoid sharing natural enemies (apparent competition) with related species is considerably weaker. Thus, "experts consuming families of experts" can be identified as the main underlying food-web pattern. We report the results of a systematic, quantitative model validation showing that the model is surprisingly accurate.  相似文献   

6.
A reaction-diffusion model describing the evolutionary dynamics of a food-web was constructed. In this model, predator-prey relationships among organisms were determined by their position in a two-dimensional phenotype space defined by two traits: as prey and as predator. The mutation process is expressed with a diffusion process of biomass in the phenotype space. Numerical simulation of this model showed co-evolutionary dynamics of isolated phenotypic clusters, including various types of evolutionary branching, which were classified into branching as prey, branching as predators, and co-evolutionary branching of both prey and predators. A complex food-web develops with recursive evolutionary branching from a single phenotypic cluster. Biodiversity peaks at the medium strength of the predator-prey interaction, where the food-web is maintained at medium biomass by a balanced frequency between evolutionary branching and extinction.  相似文献   

7.
Population density can be affected by its prey [resource] and predator [consumer] abundances through two different mechanisms: the alternation of birth [or somatic growth] or death rate and inter-habitat movement. While the food-web theory has traditionally been built on the former mechanism, the latter mechanism has formed the basis of a successful theory explaining the spatial distribution of organisms in the context of behavioral and evolutionary ecology. Yet, few studies have compared these two mechanisms, leaving the question of how similar (or different) predictions derived from birth–death-based and movement-based food-web theories unanswered. Here, theoretical models of the tri-trophic (resource–consumer-top predator) food chain were used to compare food-web patterns arising from these two mechanisms. Specifically, we evaluated the response of the food-chain structure to inter-patch differences in productivity for movement-based models and birth–death-based models. Model analysis reveals that adaptive movements give rise to positively correlated responses of all trophic levels to increased productivity; however, this pattern was not observed in the corresponding birth–death-based model. The movement-based model predicts that the food chain response to productivity is determined by the sensitivity of animal movement to the environmental conditions. More specifically, increasing sensitivity of a consumer or top predator leads to smaller inter-patch variance of the resource or consumer density, while increasing inter-patch variance in the consumer or resource density. In conclusion, adaptive movement provides an alternative mechanism correlating the food-web structure to environmental conditions.  相似文献   

8.
Coll M  Schmidt A  Romanuk T  Lotze HK 《PloS one》2011,6(7):e22591
Seagrass beds provide important habitat for a wide range of marine species but are threatened by multiple human impacts in coastal waters. Although seagrass communities have been well-studied in the field, a quantification of their food-web structure and functioning, and how these change across space and human impacts has been lacking. Motivated by extensive field surveys and literature information, we analyzed the structural features of food webs associated with Zostera marina across 16 study sites in 3 provinces in Atlantic Canada. Our goals were to (i) quantify differences in food-web structure across local and regional scales and human impacts, (ii) assess the robustness of seagrass webs to simulated species loss, and (iii) compare food-web structure in temperate Atlantic seagrass beds with those of other aquatic ecosystems. We constructed individual food webs for each study site and cumulative webs for each province and the entire region based on presence/absence of species, and calculated 16 structural properties for each web. Our results indicate that food-web structure was similar among low impact sites across regions. With increasing human impacts associated with eutrophication, however, food-web structure show evidence of degradation as indicated by fewer trophic groups, lower maximum trophic level of the highest top predator, fewer trophic links connecting top to basal species, higher fractions of herbivores and intermediate consumers, and higher number of prey per species. These structural changes translate into functional changes with impacted sites being less robust to simulated species loss. Temperate Atlantic seagrass webs are similar to a tropical seagrass web, yet differed from other aquatic webs, suggesting consistent food-web characteristics across seagrass ecosystems in different regions. Our study illustrates that food-web structure and functioning of seagrass habitats change with human impacts and that the spatial scale of food-web analysis is critical for determining results.  相似文献   

9.
The adaptive food-web hypothesis suggests that an adaptive foraging switch inverses the classically negative complexity-stability relationships of food webs into positive ones, providing a possible resolution for the long-standing paradox of how populations persist in a complex natural food web. However, its applicability to natural ecosystems has been questioned, because the positive relationship does not emerge when a niche model, a realistic "benchmark" of food-web models, is used. I hypothesize that, in the niche model, increasing connectance influences the fraction of basal species to destabilize the system and this masks the inversion of the negative complexity-stability relationship in the presence of adaptive foraging. A model analysis shows that, if this confounding effect is eliminated, then, even in a niche model, a population is more likely to persist in a more complex food web. This result supports the robustness of adaptive food-web hypothesis and reveals the condition in which the hypothesis should be tested.  相似文献   

10.
The mechanism for maintaining complex food webs has been a central issue in ecology because theory often predicts that complexity (higher the species richness, more the interactions) destabilizes food webs. Although it has been proposed that prey anti-predator defence may affect the stability of prey-predator dynamics, such studies assumed a limited and relatively simpler variation in the food-web structure. Here, using mathematical models, I report that food-web flexibility arising from prey anti-predator defence enhances community-level stability (community persistence and robustness) in more complex systems and even changes the complexity-stability relationship. The model analysis shows that adaptive predator-specific defence enhances community-level stability under a wide range of food-web complexity levels and topologies, while generalized defence does not. Furthermore, while increasing food-web complexity has minor or negative effects on community-level stability in the absence of defence adaptation, or in the presence of generalized defence, in the presence of predator-specific defence, the connectance-stability relationship may become unimodal. Increasing species richness, in contrast, always lowers community-level stability. The emergence of a positive connectance-stability relationship however necessitates food-web compartmentalization, high defence efficiency and low defence cost, suggesting that it only occurs under a restricted condition.  相似文献   

11.
12.
1. The idea that species occupy distinct niches is a fundamental concept in ecology. Classically, the niche was described as an n-dimensional hypervolume where each dimension represents a biotic or abiotic characteristic. More recently, it has been hypothesised that a single dimension may be sufficient to explain the system-level organization of trophic interactions observed between species in a community. 2. Here, we test the hypothesis that species body mass is that single dimension. Specifically, we determine how the intervality of food webs ordered by body size compares to that of randomly ordered food webs. We also extend this analysis beyond the community level to the effect of body mass in explaining the diets of individual species. 3. We conclude that body mass significantly explains the ordering of species and the contiguity of diets in empirical communities. 4. At the species-specific level, we find that the degree to which body mass is a significant explanatory variable depends strongly on the phylogenetic history, suggesting that other evolutionarily conserved traits partly account for species' roles in the food web. 5. Our investigation of the role of body mass in food webs thus helps us to better understand the important features of community food-web structure and the evolutionary forces that have led us to the communities we observe.  相似文献   

13.
14.
Biological production of the volatile compound dimethylsulfide in the ocean is the main natural source of tropospheric sulfur on a global scale, with important consequences for the radiative balance of the Earth. In the late 1980s, a Gaian feedback link between marine phytoplankton and climate through the release of atmospheric sulfur was hypothesized. However, the idea of microalgae producing a substance that could regulate climate has been criticized on the basis of its evolutionary feasibility. Recent advances have shown that volatile sulfur is a result of ecological interactions and transformation processes through planktonic food webs. It is, therefore, not only phytoplankton biomass, taxonomy or activity, but also food-web structure and dynamics that drive the oceanic production of atmospheric sulfur. Accordingly, the viewpoint on the ecological and evolutionary basis of this amazing marine biota-atmosphere link is changing.  相似文献   

15.
Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss.  相似文献   

16.
Species introductions can alter local food-web structure by changing the vertical or horizontal diversity within communities, largely driven by their body size distributions. Increasing vertical and horizontal diversities is predicted to have opposing effects on stability. However, their interactive effects remain largely overlooked. We investigated the independent and collective effects of vertical and horizontal diversities on food-web stability in alpine lakes stocked with variable body size distributions of introduced fish species. Introduced predators destabilize food-webs by increasing vertical diversity through food chain lengthening. Alternatively, increasing horizontal diversity results in more stable food-web topologies. A non-linear interaction between vertical and horizontal diversities suggests that increasing vertical diversity is most destabilizing when horizontal diversity is low. Our findings suggest that the size structure of introduced predators drives their impacts on stability by modifying the structure of food-webs, and highlights the interactive effects of vertical and horizontal diversities on stability.  相似文献   

17.
R. M. Thompson  C. R. Townsend 《Oikos》2005,108(1):137-148
We used standardized techniques to assemble eighteen food webs in streams. Our aim was to identify the determinants of food-web structure with particular reference to energy availability (related to land use), spatial heterogeneity and ecosystem size (both independent of land use). Forested streams displayed lower algal productivity and higher standing crops of organic matter than the grassland streams. The organic matter in the pine streams was probably of lower quality than that elsewhere. Measures of energy availability and spatial heterogeneity predicted species richness and connectance. A combination of energy availability, spatial heterogeneity and ecosystem size accounted for the representation of particular invertebrate feeding groups in the streams. Algal production and organic matter standing crop were important determinants of invertebrate biomass and overall food-web structure. Grassland sites showed a positive relationship between algal productivity and food chain length whereas forest sites displayed a positive relationship between ecosystem size and food chain length. Therefore, these results provide support for both Pimm's productivity hypothesis and Cohen and Newman's ecosystem size hypothesis.  相似文献   

18.
Several properties of food webs—the networks of feeding links between species—are known to vary systematically with the species richness of the underlying community. Under the ‘latitude–niche breadth hypothesis’, which predicts that species in the tropics will tend to evolve narrower niches, one might expect that these scaling relationships could also be affected by latitude. To test this hypothesis, we analysed the scaling relationships between species richness and average generality, vulnerability and links per species across a set of 196 empirical food webs. In estuarine, marine and terrestrial food webs there was no effect of latitude on any scaling relationship, suggesting constant niche breadth in these habitats. In freshwater communities, on the other hand, there were strong effects of latitude on scaling relationships, supporting the latitude–niche breadth hypothesis. These contrasting findings indicate that it may be more important to account for habitat than latitude when exploring gradients in food-web structure.  相似文献   

19.
Food webs represent trophic (feeding) interactions in ecosystems. Since the late 1970s, it has been recognized that food-webs have a surprisingly close relationship to interval graphs. One interpretation of food-web intervality is that trophic niche space is low-dimensional, meaning that the trophic character of a species can be expressed by a single or at most a few quantitative traits. In a companion paper we demonstrated, by simulating a minimal food-web model, that food webs are also expected to be interval when niche-space is high-dimensional. Here we characterize the fundamental mechanisms underlying this phenomenon by proving a set of rigorous conditions for food-web intervality in high-dimensional niche spaces. Our results apply to a large class of food-web models, including the special case previously studied numerically.  相似文献   

20.
Proximate structural mechanisms for variation in food-chain length   总被引:2,自引:0,他引:2  
David M. Post  Gaku Takimoto 《Oikos》2007,116(5):775-782
Food-chain length is a central characteristic of ecological communities because of its strong influence on community structure and ecosystem function. While recent studies have started to better clarify the relationship between food-chain length and environmental gradients such as resource availability and ecosystem size, much less progress has been made in isolating the ultimate and proximate mechanisms that determine food-chain length. Progress has been slow, in part, because research has paid little attention to the proximate changes in food web structure that must link variation in food-chain length to the ultimate dynamic mechanism. Here we outline the structural mechanisms that determine variation in food-chain length. We explore the implications of these mechanisms for understanding how changes in food-web structure influence food-chain length using both an intraguild predation community model and data from natural ecosystems. The resulting framework provides the mechanisms for linking ultimate dynamic mechanisms to variation in food-chain length. It also suggests that simple linear food-chain models may make misleading predictions about patterns of variation in food-chain length because they are unable to incorporate important structural mechanisms that alter food-web dynamics and cause non-linear shifts in food-web structure. Intraguild predation models provide a more appropriate theoretical framework for understanding food-chain length in most natural ecosystems because they accommodate all of the proximate structural mechanisms identified here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号