首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huntington’s disease (HD) is an inherited progressive neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin gene (HTT). The primary neuropathology of HD has been attributed to the preferential degeneration of medium spiny neurons (MSN) in the striatum. Reports on striatal neurogenesis have been a subject of debate; nevertheless, it should be considered as an endogenous attempt to repair the brain. The subventricular zone (SVZ) might offer a close-by region to supply the degenerated striatum with new cells. Previously, we have demonstrated that R6/2 mice, a widely used preclinical model representing an early onset HD, showed reduced olfactory bulb (OB) neurogenesis but induced striatal migration of neuroblasts without affecting the proliferation of neural progenitor cell (NPCs) in the SVZ. The present study revisits these findings, using a clinically more relevant transgenic rat model of late onset HD (tgHD rats) carrying the human HTT gene with 51 CAG repeats and mimicking many of the neuropathological features of HD seen in patients. We demonstrate that cell proliferation is reduced in the SVZ and OB of tgHD rats compared to WT rats. In the OB of tgHD rats, although cell survival was reduced, the frequency of neuronal differentiation was not altered in the granule cell layer (GCL) compared to the WT rats. However, an increased frequency of dopamenergic neuronal differentiation was noticed in the glomerular layer (GLOM) of tgHD rats. Besides this, we observed a selective proliferation of neuroblasts in the adjacent striatum of tgHD rats. There was no evidence for neuronal maturation and survival of these striatal neuroblasts. Therefore, the functional role of these invading neuroblasts still needs to be determined, but they might offer an endogenous alternative for stem or neuronal cell transplantation strategies.  相似文献   

2.
Numerous lines of evidence suggest that Notch signaling plays a pivotal role in controlling the production of neurons from progenitor cells. However, most experiments have relied on gain-of-function approaches because perturbation of Notch signaling results in death prior to the onset of neurogenesis. Here, we examine the requirement for Notch signaling in the development of the striatum through the analysis of different single and compound Notch1 conditional and Notch3 null mutants. We find that normal development of the striatum depends on the presence of appropriate Notch signals in progenitors during a critical window of embryonic development. Early removal of Notch1 prior to neurogenesis alters early-born patch neurons but not late-born matrix neurons in the striatum. We further show that the late-born striatal neurons in these mutants are spared as a result of functional compensation by Notch3. Notably, however, the removal of Notch signaling subsequent to cells leaving the germinal zone has no obvious effect on striatal organization and patterning. These results indicate that Notch signaling is required in neural progenitor cells to control cell fate in the striatum, but is dispensable during subsequent phases of neuronal migration and differentiation.  相似文献   

3.
Neurogenesis persists throughout life in the rodent subventricular zone (SVZ)-olfactory bulb pathway. The molecular regulation of this neurogenic circuit is poorly understood. Because the components for retinoid signaling are present in this pathway, we examined the influence of retinoic acid (RA) on postnatal SVZ-olfactory bulb neurogenesis. Using both SVZ neurosphere stem cell and parasagittal brain slice cultures derived from postnatal mouse, we found that RA exposure increased neurogenesis by enhancing the proliferation and neuronal differentiation of forebrain SVZ neuroblasts. The RA precursor retinol had a similar effect, which was reversed by treating cultures with the RA synthesis inhibitor disulfiram. Electroporation of dominant-negative retinoid receptors into the SVZ of slice cultures also blocked neuroblast migration to the olfactory bulb and altered the morphology of the progenitors. Moreover, the administration of disulfiram to neonatal mice decreased in vivo cell proliferation in the striatal SVZ. These results indicate that RA is a potent mitogen for SVZ neuroblasts and is required for their migration to the olfactory bulb. The regulation of multiple steps in the SVZ-olfactory bulb neurogenic pathway by RA suggests that manipulation of retinoid signaling is a potential therapeutic strategy to augment neurogenesis after brain injury.  相似文献   

4.
Neuroblasts from the subventricular zone (SVZ) migrate to striatum following stroke, but most of them die in the ischaemic milieu and this can be related to exacerbated microglial activation. Here, we explored the effects of the non-steroidal anti-inflammatory indomethacin on microglial activation, neuronal preservation and neuroblast migration following experimental striatal stroke in adult rats. Animals were submitted to endothelin-1 (ET-1)-induced focal striatal ischaemia and were treated with indomethacin or sterile saline (i.p.) for 7 days, being perfused after 8 or 14 days. Immunohistochemistry was performed to assess neuronal loss (anti-NeuN), microglial activation (anti-Iba1, ED1) and migrating neuroblasts (anti-DCX) by counting NeuN, ED1 and DCX-positive cells in the ischaemic striatum or SVZ. Indomethacin treatment reduced microglia activation and the number of ED1+ cells in both 8 and 14 days post injury as compared with controls. There was an increase in the number of DCX+ cells in both SVZ and striatum at the same survival times. Moreover, there was a decrease in the number of NeuN+ cells in indomethacin-treated animals as compared with the control group at 8 days but not after 14 days post injury. Our results suggest that indomethacin treatment modulates microglia activation, contributing to increased neuroblast proliferation in the SVZ and migration to the ischaemic striatum following stroke.  相似文献   

5.
We and others have shown that focal cerebral ischemia induces lateral migration of neuroblasts from the ipsilateral subventricular zone (SVZ) to the ischemic striatum. The signaling pathways underlying this phenomenon are not fully understood. The present study examined the role of osteopontin (OPN) in post-ischemic lateral migration of neuroblasts. Focal ischemia was induced by transient middle cerebral artery occlusion in adult spontaneous hypertensive rats. The expression of OPN in the ischemic brain was evaluated by immunohistochemistry, which showed that an up-regulation of OPN expression in the ipsilateral striatum at day 3, 7, 14 and 1 month of reperfusion with a peak at day 7. Double staining showed co-localization of OPN with ED1+ macrophages/microglia in the ischemic regions. Inhibition of OPN activity by infusing a neutralizing antibody against OPN into the ischemic striatum significantly decreased the area covered with doublecortin+ neuroblasts in the ipsilateral striatum. In vitro, OPN treatment did not affect the proliferation of neural progenitors, but induced an increased trans-well and radial migration of neural progenitors. The cultured neural progenitors expressed the OPN receptors CD44 and integrin β1. Blockade of the CD44 receptor had no effects on OPN mediated trans-well and radial migration of neural progenitors. However, blockade of integrin β1 receptor abolished the migration of neural progenitors in the absence or the presence of OPN. These results suggest that up-regulated expression of OPN produced by macrophages/microglia in the ischemic brain is an attractant and inducer for the lateral migration of neuroblasts from the SVZ to the injured region.  相似文献   

6.
We and others have shown that focal cerebral ischemia induces lateral migration of neuroblasts from the ipsilateral subventricular zone (SVZ) to the ischemic striatum. The signaling pathways underlying this phenomenon are not fully understood. The present study examined the role of osteopontin (OPN) in post-ischemic lateral migration of neuroblasts. Focal ischemia was induced by transient middle cerebral artery occlusion in adult spontaneous hypertensive rats. The expression of OPN in the ischemic brain was evaluated by immunohistochemistry, which showed that an up-regulation of OPN expression in the ipsilateral striatum at day 3, 7, 14 and 1 month of reperfusion with a peak at day 7. Double staining showed co-localization of OPN with ED1+ macrophages/microglia in the ischemic regions. Inhibition of OPN activity by infusing a neutralizing antibody against OPN into the ischemic striatum significantly decreased the area covered with doublecortin+ neuroblasts in the ipsilateral striatum. In vitro, OPN treatment did not affect the proliferation of neural progenitors, but induced an increased trans-well and radial migration of neural progenitors. The cultured neural progenitors expressed the OPN receptors CD44 and integrin β1. Blockade of the CD44 receptor had no effects on OPN mediated trans-well and radial migration of neural progenitors. However, blockade of integrin β1 receptor abolished the migration of neural progenitors in the absence or the presence of OPN. These results suggest that up-regulated expression of OPN produced by macrophages/microglia in the ischemic brain is an attractant and inducer for the lateral migration of neuroblasts from the SVZ to the injured region.  相似文献   

7.
8.
Major classical neurotransmitters including GABA and glutamate play novel morphogenic roles during development of the mammalian CNS. During forebrain neurogenesis, glutamate regulates neuroblast proliferation in different germinal domains using receptor subtype-specific mechanisms. For example, ionotropic N -methyl-D-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptors mediate distinct proliferative effects in ventral or dorsal forebrain germinal domains, and regulate the correct number of neurons that populate the striatum or cerebral cortex. Recent work suggests metabotropic receptors may also mediate glutamate's proliferative effects. Group I mGluR5 receptor subtypes are highly expressed in forebrain germinal zones. Using in vitro and in vivo methods, we demonstrate mGluR5 receptor activation plays an important role in neuroblast proliferation in the ventral telencephalon, and helps determine the complement of striatum projection neurons. mGluR5 receptor-mediated effects on striatal neuronal progenitors are restricted mainly to early cycling populations in the ventricular zone, with little effect on secondary proliferative populations in the subventricular zone. In contrast to proliferative effects in the ventral telencephalon, mGluR5 receptors do not modulate proliferation of dorsal telencephalon-derived cortical neuroblasts. Heterogeneous domain-specific proliferative effects of glutamate-mediated by specific receptor subtypes provide an important developmental mechanism allowing generation of the correct complement of neuronal subtypes that populate the mammalian forebrain.  相似文献   

9.
Neurogenesis involves generation of functional newborn neurons from neural stem cells (NSCs). Insufficient formation or accelerated degeneration of newborn neurons may contribute to the severity of motor/nonmotor symptoms of Parkinson’s disease (PD). However, the functional role of adult neurogenesis in PD is yet not explored and whether glycogen synthase kinase-3β (GSK-3β) affects multiple steps of adult neurogenesis in PD is still unknown. We investigated the possible underlying molecular mechanism of impaired adult neurogenesis associated with PD. Herein, we show that single intra-medial forebrain bundle (MFB) injection of 6-hydroxydopamine (6-OHDA) efficiently induced long-term activation of GSK-3β and reduced NSC self-renewal, proliferation, neuronal migration, and neuronal differentiation accompanied with increased astrogenesis in subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Indeed, 6-OHDA also delayed maturation of neuroblasts in the DG as witnessed by their reduced dendritic length and arborization. Using a pharmacological approach to inhibit GSK-3β activation by specific inhibitor SB216763, we show that GSK-3β inhibition enhances radial glial cells, NSC proliferation, self-renewal in the SVZ, and the subgranular zone (SGZ) in the rat PD model. Pharmacological inhibition of GSK-3β activity enhances neuroblast population in SVZ and SGZ and promotes migration of neuroblasts towards the rostral migratory stream and lesioned striatum from dorsal SVZ and lateral SVZ, respectively, in PD model. GSK-3β inhibition enhances dendritic arborization and survival of granular neurons and stimulates NSC differentiation towards the neuronal phenotype in DG of PD model. The aforementioned effects of GSK-3β involve a crosstalk between Wnt/β-catenin and Notch signaling pathways that are known to regulate NSC dynamics.  相似文献   

10.
Wang C  Liu F  Liu YY  Zhao CH  You Y  Wang L  Zhang J  Wei B  Ma T  Zhang Q  Zhang Y  Chen R  Song H  Yang Z 《Cell research》2011,21(11):1534-1550
It is of great interest to identify new neurons in the adult human brain, but the persistence of neurogenesis in the subventricular zone (SVZ) and the existence of the rostral migratory stream (RMS)-like pathway in the adult human forebrain remain highly controversial. In the present study, we have described the general configuration of the RMS in adult monkey, fetal human and adult human brains. We provide evidence that neuroblasts exist continuously in the anterior ventral SVZ and RMS of the adult human brain. The neuroblasts appear singly or in pairs without forming chains; they exhibit migratory morphologies and co-express the immature neuronal markers doublecortin, polysialylated neural cell adhesion molecule and βIII-tubulin. Few of these neuroblasts appear to be actively proliferating in the anterior ventral SVZ but none in the RMS, indicating that neuroblasts distributed along the RMS are most likely derived from the ventral SVZ. Interestingly, no neuroblasts are found in the adult human olfactory bulb. Taken together, our data suggest that the SVZ maintains the ability to produce neuroblasts in the adult human brain.  相似文献   

11.
Bumetanide, a selective Na+-K+-Cl?-co-transporter inhibitor, is widely used in clinical practice as a loop diuretic. In addition, bumetanide has been reported to attenuate ischemia-induced cerebral edema and reduce neuronal injury. This study examined whether bumetanide could influence neurogenesis and behavioral recovery in rats after experimentally induced stroke. Adult male Wistar rats were randomly assigned to four groups: sham, sham treated with bumetanide, ischemia, and ischemia treated with bumetanide. Focal cerebral ischemia was induced by injection of endothelin-1. Bumetanide (0.2 mg/kg/day) was infused into the lateral ventricle with drug administration being initiated 1 week after ischemia and continued for 3 weeks. Behavioral impairment and recovery were evaluated by tapered/ledged beam-walking test on post-stroke days 28. Then, the rats were perfused for BrdU/DCX (neuroblast marker), BrdU/NeuN (neuronal marker), BrdU/GFAP (astrocyte marker), and BrdU/Iba-1 (microglia marker) immunohistochemistry. The numbers of neuroblasts in the subventricular zone (SVZ) were significantly increased after the experimentally induced stroke. Bumetanide treatment increased migration of neuroblasts in the SVZ towards the infarct area, enhanced long-term survival of newborn neurons, and improved sensorimotor recovery, but it did not exert any effects on inflammation. In conclusion, our results demonstrated that chronic bumetanide treatment enhances neurogenesis and behavioral recovery after experimentally induced stroke in rats.  相似文献   

12.
Generation and migration of cells in the developing striatum.   总被引:8,自引:0,他引:8  
A L Halliday  C L Cepko 《Neuron》1992,9(1):15-26
The development of the rat striatum was investigated using a combination of two histochemically distinguishable retrovirus vectors. Using this method, it was possible to identify clonal boundaries within the embryonic striatum and thus determine patterns of proliferation, migration, and some lineal relationships. Several novel aspects of striatal histogenesis were discovered. Striatal progenitor cells do not exhibit a stem cell pattern of division between embryonic day 15 (E15) and E19; a progenitor-progeny relationship appears to exist for ventricular zone and subventricular zone (SVZ) cells; striatal progenitors produce a variety of clone types; some SVZ cells migrate radially, and some migrate tangentially within the SVZ; and radial glia and presumptive neurons can occur in the same clone.  相似文献   

13.
NeuroD is required for the survival of many subtypes of developing neurons in the vertebrate central nervous system. Because NeuroD-deficient neurons in the hippocampus, cerebellum, and inner ear die prematurely in the early stage of neurogenesis, the role of NeuroD during the later stages of neurogenesis of these cell subtypes is not well understood. In addition, the mechanism of NeuroD-deficient neuronal death has not been investigated. It was hypothesized that NeuroD-dependent neuronal death occurs through a Bax-dependent apoptotic pathway. Based on this hypothesis, this study attempted to rescue neuronal cell death by deleting the Bax gene in NeuroD null mice to investigate the role of NeuroD in surviving neurons. The NeuroD and Bax double null mice displayed a decrease in the number of apoptotic cells in the hippocampus and the cerebellum and the rescue of vestibulocochlear ganglion (VCG) neurons that failed to migrate and innervate. In addition, at E13.5, the NeuroD−/−Bax−/− VCG neurons failed to express TrkB and TrkC, which are known to be essential for the survival of those neurons. These data suggest that neuronal death in NeuroD null mice is mediated by Bax-dependent apoptosis and that NeuroD is required for the migration of VCG neurons. Finally, these data show that TrkB and TrkC expression in E13.5 VCG neurons requires NeuroD and that TrkB and TrkC expression may be necessary for the normal migration and innervations of those neurons.  相似文献   

14.
15.
Newborn striatal neurons induced by middle cerebral artery occlusion (MCAO) can form functional projections targeting into the substantia nigra, which should be very important for the recovery of motor function. Exercise training post-stroke improves motor recovery in clinic patients and increases striatal neurogenesis in experimental animals. This study aimed to investigate the effects of exercise on axon regeneration of newborn projection neurons in adult rat brains following ischemic stroke. Rats were subjected to a transient MCAO to induce focal cerebral ischemic injury, followed by 30 minutes of exercise training daily from 5 to 28 days after MCAO. Motor function was tested using the rotarod test. We used fluorogold (FG) nigral injection to trace striatonigral and corticonigral projection neurons, and green fluorescent protein (GFP)-targeting retroviral vectors combined with FG double labeling (GFP+ -FG+) to detect newborn projection neurons. The results showed that exercise improved the recovery of motor function of rats after MCAO. Meanwhile, exercise also increased the levels of BDNF and VEGF, and reduced Nogo-A in ischemic brain. On this condition, we further found that exercise significantly increased the number of GFP+ -FG+ neurons in the striatum and frontal and parietal cortex ipsilateral to MCAO, suggesting an increase of newborn striatonigral and corticonigral projection neurons by exercise post-stroke. In addition, we found that exercise also increased NeuN+ and FG+ cells in the striatum and frontal and parietal cortex, the ischemic territory, and tyrosine hydroxylase (TH) immunopositive staining cells in the substantia nigra, a region remote from the ischemic territory. Our results provide the first evidence that exercise can effectively enhance the capacity for regeneration of newborn projection neurons in ischemic injured mammalian brains while improving motor function. Our results provide a very important cellular mechanism to illustrate the effectiveness of rehabilitative treatment post-stroke in the clinic.  相似文献   

16.
The subventricular zone (SVZ) of the lateral ventricles is the largest neurogenic niche of the postnatal brain. New SVZ-generated neurons migrate via the rostral migratory stream to the olfactory bulb (OB) where they functionally integrate into preexisting neuronal circuits. Nonsynaptic GABA signaling was previously shown to inhibit SVZ-derived neurogenesis. Here we identify the endogenous protein diazepam binding inhibitor (DBI) as a positive modulator of SVZ postnatal neurogenesis by regulating GABA activity in transit-amplifying cells. We performed DBI loss- and gain-of-function experiments in vivo at the peak of postnatal OB neuron generation in mice and demonstrate that DBI enhances proliferation by preventing SVZ progenitors to exit the cell cycle. Furthermore, we provide evidence that DBI exerts its effect on SVZ progenitors via its octadecaneuropeptide proteolytic product (ODN) by inhibiting GABA-induced currents. Together our data reveal a regulatory mechanism by which DBI counteracts the inhibitory effect of nonsynaptic GABA signaling on subventricular neuronal proliferation.  相似文献   

17.
18.
Oscillatory entrainment of striatal neurons in freely moving rats   总被引:12,自引:0,他引:12  
Oscillations and synchrony in basal ganglia circuits may play a key role in the organization of voluntary actions and habits. We recorded single units and local field potentials from multiple striatal and cortical locations simultaneously, over a range of behavioral states. We observed opposite gradients of oscillatory entrainment, with dorsal/lateral striatal neurons entrained to high-voltage spindle oscillations ("spike wave discharges") and ventral/medial striatal neurons entrained to the hippocampal theta rhythm. While the majority of units were likely medium-spiny projection neurons, a second neuronal population showed characteristic features of fast-spiking GABAergic interneurons, including tonic activity, brief waveforms, and high-frequency bursts. These fired at an earlier spindle phase than the main neuronal population, and their density within striatum corresponded closely to the intensity of spindle oscillations. The orchestration of oscillatory activity by networks of striatal interneurons may be an important mechanism in the pathophysiology of neurological disorders such as Parkinson's disease.  相似文献   

19.
ObjectivesThe area of the subventricular zone (SVZ) in the adult brain exhibits the highest number of proliferative cells, which, together with the olfactory bulb (OB), maintains constant brain plasticity through the generation, migration and integration of newly born neurons. Despite Tau and its malfunction is increasingly related to deficits of adult hippocampal neurogenesis and brain plasticity under pathological conditions [e.g. in Alzheimer''s disease (AD)], it remains unknown whether Tau plays a role in the neurogenic process of the SVZ and OB system under conditions of chronic stress, a well‐known sculptor of brain and risk factor for AD.Materials and methodsDifferent types of newly born cells in SVZ and OB were analysed in animals that lack Tau gene (Tau‐KO) and their wild‐type littermates (WT) under control or chronic stress conditions.ResultsWe demonstrate that chronic stress reduced the number of proliferating cells and neuroblasts in the SVZ leading to decreased number of newborn neurons in the OB of adult WT, but not Tau‐KO, mice. Interestingly, while stress‐evoked changes were not detected in OB granular cell layer, Tau‐KO exhibited increased number of mature neurons in this layer indicating altered neuronal migration due to Tau loss.ConclusionsOur findings suggest the critical involvement of Tau in the neurogenesis suppression of SVZ and OB neurogenic niche under stressful conditions highlighting the role of Tau protein as an essential regulator of stress‐driven plasticity deficits.  相似文献   

20.
The presence of neural stem cells in the adult brain is currently widely accepted and efforts are made to harness the regenerative potential of these cells. The dentate gyrus of the hippocampal formation, and the subventricular zone (SVZ) of the anterior lateral ventricles, are considered the main loci of adult neurogenesis. The rostral migratory stream (RMS) is the structure funneling SVZ progenitor cells through the forebrain to their final destination in the olfactory bulb. Moreover, extensive proliferation occurs in the RMS. Some evidence suggest the presence of stem cells in the RMS, but these cells are few and possibly of limited differentiation potential. We have recently demonstrated the specific expression of the cytoskeleton linker protein radixin in neuroblasts in the RMS and in oligodendrocyte progenitors throughout the brain. These cell populations are greatly altered after intracerebroventricular infusion of epidermal growth factor (EGF). In the current study we investigate the effect of EGF infusion on the rat RMS. We describe a specific increase of radixin+/Olig2+ cells in the RMS. Negative for NG2 and CNPase, these radixin+/Olig2+ cells are distinct from typical oligodendrocyte progenitors. The expanded Olig2+ population responds rapidly to EGF and proliferates after only 24 hours along the entire RMS, suggesting local activation by EGF throughout the RMS rather than migration from the SVZ. In addition, the radixin+/Olig2+ progenitors assemble in chains in vivo and migrate in chains in explant cultures, suggesting that they possess migratory properties within the RMS. In summary, these results provide insight into the adaptive capacity of the RMS and point to an additional stem cell source for future brain repair strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号