首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

A highly sensitive, rapid and cost efficient method that can detect active botulinum neurotoxin (BoNT) in complex biological samples such as foods or serum is desired in order to 1) counter the potential bioterrorist threat 2) enhance food safety 3) enable future pharmacokinetic studies in medical applications that utilize BoNTs.

Methodology/Principal Findings

Here we describe a botulinum neurotoxin serotype A assay with a large immuno-sorbent surface area (BoNT/A ALISSA) that captures a low number of toxin molecules and measures their intrinsic metalloprotease activity with a fluorogenic substrate. In direct comparison with the “gold standard” mouse bioassay, the ALISSA is four to five orders of magnitudes more sensitive and considerably faster. Our method reaches attomolar sensitivities in serum, milk, carrot juice, and in the diluent fluid used in the mouse assay. ALISSA has high specificity for the targeted type A toxin when tested against alternative proteases including other BoNT serotypes and trypsin, and it detects the holotoxin as well as the multi-protein complex form of BoNT/A. The assay was optimized for temperature, substrate concentration, size and volume proportions of the immuno-sorbent matrix, enrichment and reaction times. Finally, a kinetic model is presented that is consistent with the observed improvement in sensitivity.

Conclusions/Significance

The sensitivity, specificity, speed and simplicity of the BoNT ALISSA should make this method attractive for diagnostic, biodefense and pharmacological applications.  相似文献   

2.

Background

Giant cell arteritis (GCA) and Takayasu''s arteritis (TAA) are large vessel vasculitides (LVV) for which corticosteroids (CS) are the mainstay for treatment. In patients with LVV unable to tolerate CS, biological agents have been used with variable effectiveness.

Objective

To systematically review the effectiveness and safety of biological agents in patients with LVV.

Methods

We searched 5 electronic databases (inception to October 2012) and conference abstracts with no language restrictions. Two reviewers independently selected studies, extracted data and assessed methodological quality. Our protocol was registered in PROSPERO.

Results

We included 25 studies (3 RCTs and 22 case series with ≥2 cases). 95 GCA and 98 TAA patients received biological agents. The RCTs using anti-TNF agents (infliximab, etanercept and adalimumab) did not suggest a benefit in GCA. GCA patients receiving tocilizumab, in case series, achieved remission (19 patients) and reduction of corticosteroid dose (mean difference, –16.55 mg/day (95% CI: –26.24, –6.86)). In case series, 75 patients with refractory TAA treated with infliximab discontinued CS 32% of the time. Remission was variably defined and the studies were clinically heterogeneous which precluded further analysis.

Conclusion

This systematic review demonstrated a weak evidence base on which to assess the effectiveness of biological treatment in LVV. Evidence from RCTs suggests that anti-TNF agents are not effective for remission or reduction of CS use. Tocilizumab and infliximab may be effective in the management of LVV and refractory TAA, respectively, although the evidence comes from case series. Future analytical studies are needed to confirm these findings.  相似文献   

3.
Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation   总被引:1,自引:0,他引:1  

Background

Evidence indicates that Bax functions as a “lipidic” pore to regulate mitochondrial outer membrane permeabilization (MOMP), the apoptosis commitment step, through unknown membrane elements. Here we show mitochondrial ceramide elevation facilitates MOMP-mediated cytochrome c release in HeLa cells by generating a previously-unrecognized mitochondrial ceramide-rich macrodomain (MCRM), which we visualize and isolate, into which Bax integrates.

Methodology/Principal Findings

MCRMs, virtually non-existent in resting cells, form upon irradiation coupled to ceramide synthase-mediated ceramide elevation, optimizing Bax insertion/oligomerization and MOMP. MCRMs are detected by confocal microscopy in intact HeLa cells and isolated biophysically as a light membrane fraction from HeLa cell lysates. Inhibiting ceramide generation using a well-defined natural ceramide synthase inhibitor, Fumonisin B1, prevented radiation-induced Bax insertion, oligomerization and MOMP. MCRM deconstruction using purified mouse hepatic mitochondria revealed ceramide alone is non-apoptogenic. Rather Bax integrates into MCRMs, oligomerizing therein, conferring 1–2 log enhanced cytochrome c release. Consistent with this mechanism, MCRM Bax isolates as high molecular weight “pore-forming” oligomers, while non-MCRM membrane contains exclusively MOMP-incompatible monomeric Bax.

Conclusions/Significance

Our recent studies in the C. elegans germline indicate that mitochondrial ceramide generation is obligate for radiation-induced apoptosis, although a mechanism for ceramide action was not delineated. Here we demonstrate that ceramide, generated in the mitochondrial outer membrane of mammalian cells upon irradiation, forms a platform into which Bax inserts, oligomerizes and functionalizes as a pore. We posit conceptualization of ceramide as a membrane-based stress calibrator, driving membrane macrodomain organization, which in mitochondria regulates intensity of Bax-induced MOMP, and is pharmacologically tractable in vitro and in vivo.  相似文献   

4.

Context

Exploring intermediate phenotypes within the human brain''s functional and structural circuitry is a promising approach to explain the relative contributions of genetics, complex behaviors and neural mechanisms in the development of major depressive disorder (MDD). The polymorphic region 5-HTTLPR in the serotonin transporter gene (SLC6A4) has been shown to modulate MDD risk, but the neural underpinnings are incompletely understood.

Objective

37 right handed healthy women between 21 and 61 years of age were invited to participate in an fMRI modified n-back study. The functional polymorphism 5-HTTLPR located in the promoter region of the SLC6A4 gene was genotyped using polymerase chain reaction (PCR).

Results

Short 5-HTTLPR allele carriers showed more blood-oxygen-level-dependent (BOLD) bilateral prefrontal cortex activation in the right [F(2, 30) = 4.8, η2 = .25, p = .026] and left [F(2, 30) = 4.1, η2 = .22, p = .015] inferior frontal gyrus pars triangularis with increasing n-back task difficulty relative to long 5-HTTLPR allele carriers. Short 5-HTTLPR allele carriers had inferior task performance on the most difficult n-back condition [F(2, 30) = 4.9, η2 = .26, p = .014].

Conclusions

This activation pattern found in healthy at risk individuals resembles an activation pattern that is typically found in patients suffering from acute MDD. Altered function in these areas may reflect intermediate phenotypes and may help explain the increased risk of depression in short 5-HTTLPR allele carriers.  相似文献   

5.

Background

The burden of mortality and morbidity related to pregnancy and childbirth remains concentrated in developing countries. SEA-ORCHID (South East Asia Optimising Reproductive and Child Health In Developing countries) is evaluating whether a multifaceted intervention to strengthen capacity for research synthesis, evidence-based care and knowledge implementation improves adoption of best clinical practice recommendations leading to better health for mothers and babies. In this study we assessed current practices in perinatal health care in four South East Asian countries and determined whether they were aligned with best practice recommendations.

Methodology/Principal Findings

We completed an audit of 9550 medical records of women and their 9665 infants at nine hospitals; two in each of Indonesia, Malaysia and The Philippines, and three in Thailand between January-December 2005. We compared actual clinical practices with best practice recommendations selected from the Cochrane Library and the World Health Organization Reproductive Health Library.Evidence-based components of the active management of the third stage of labour and appropriately treating eclampsia with magnesium sulphate were universally practiced in all hospitals. Appropriate antibiotic prophylaxis for caesarean section, a beneficial form of care, was practiced in less than 5% of cases in most hospitals. Use of the unnecessary practices of enema in labour ranged from 1% to 61% and rates of episiotomy for vaginal birth ranged from 31% to 95%. Other appropriate practices were commonly performed to varying degrees between countries and also between hospitals within the same country.

Conclusions/Significance

Whilst some perinatal health care practices audited were consistent with best available evidence, several were not. We conclude that recording of clinical practices should be an essential step to improve quality of care. Based on these findings, the SEA-ORCHID project team has been developing and implementing interventions aimed at increasing compliance with evidence-based clinical practice recommendations to improve perinatal practice in South East Asia.  相似文献   

6.

Background

Nesprins (Nuclear envelope spectrin-repeat proteins) are a novel family of giant spectrin-repeat containing proteins. The nesprin-1 and nesprin-2 genes consist of 146 and 116 exons which encode proteins of ∼1mDa and ∼800 kDa is size respectively when all the exons are utilised in translation. However emerging data suggests that the nesprins have multiple alternative start and termination sites throughout their genes allowing the generation of smaller isoforms.

Results

In this study we set out to identify novel alternatively transcribed nesprin variants by screening the EST database and by using RACE analysis to identify cDNA ends. These two methods provided potential hits for alternative start and termination sites that were validated by PCR and DNA sequencing. We show that these alternative sites are not only expressed in a tissue specific manner but by combining different sites together it is possible to create a wide array of nesprin variants. By cloning and expressing small novel nesprin variants into human fibroblasts and U2OS cells we show localization to actin stress-fibres, focal adhesions, microtubules, the nucleolus, nuclear matrix and the nuclear envelope (NE). Furthermore we show that the sub-cellular localization of individual nesprin variants can vary depending on the cell type, suggesting any single nesprin variant may have different functions in different cell types.

Conclusions

These studies suggest nesprins act as highly versatile tissue specific intracellular protein scaffolds and identify potential novel functions for nesprins beyond cytoplasmic-nuclear coupling. These alternate functions may also account for the diverse range of disease phenotypes observed when these genes are mutated.  相似文献   

7.

Background

Rosacea is a common disfiguring skin disease of primarily Caucasians characterized by central erythema of the face, with telangiectatic blood vessels, papules and pustules, and can produce skin thickening, especially on the nose of men, creating rhinophyma. Rosacea can also produce dry, itchy eyes with irritation of the lids, keratitis and corneal scarring. The cause of rosacea has been proposed as over-production of the cationic cathelicidin peptide LL-37.

Methodology/Principal Findings

We tested a new class of non-anticoagulant sulfated anionic polysaccharides, semi-synthetic glycosaminoglycan ethers (SAGEs) on key elements of the pathogenic pathway leading to rosacea. SAGEs were anti-inflammatory at ng/ml, including inhibition of polymorphonuclear leukocyte (PMN) proteases, P-selectin, and interaction of the receptor for advanced glycation end-products (RAGE) with four representative ligands. SAGEs bound LL-37 and inhibited interleukin-8 production induced by LL-37 in cultured human keratinocytes. When mixed with LL-37 before injection, SAGEs prevented the erythema and PMN infiltration produced by direct intradermal injection of LL-37 into mouse skin. Topical application of a 1% (w/w) SAGE emollient to overlying injected skin also reduced erythema and PMN infiltration from intradermal LL-37.

Conclusions

Anionic polysaccharides, exemplified by SAGEs, offer potential as novel mechanism-based therapies for rosacea and by extension other LL-37-mediated and RAGE-ligand driven skin diseases.  相似文献   

8.

Background

BAP1 has been shown to be a target of both somatic alteration in high-risk ocular melanomas (OM) and germline inactivation in a few individuals from cancer-prone families. These findings suggest that constitutional BAP1 changes may predispose individuals to metastatic OM and that familial permeation of deleterious alleles could delineate a new cancer syndrome.

Design

To characterize BAP1''s contribution to melanoma risk, we sequenced BAP1 in a set of 100 patients with OM, including 50 metastatic OM cases and 50 matched non-metastatic OM controls, and 200 individuals with cutaneous melanoma (CM) including 7 CM patients from CM-OM families and 193 CM patients from CM-non-OM kindreds.

Results

Germline BAP1 mutations were detected in 4/50 patients with metastatic OM and 0/50 cases of non-metastatic OM (8% vs. 0%, p = 0.059). Since 2/4 of the BAP1 carriers reported a family history of CM, we analyzed 200 additional hereditary CM patients and found mutations in 2/7 CM probands from CM-OM families and 1/193 probands from CM-non-OM kindreds (29% vs. 0.52%, p = .003). Germline mutations co-segregated with both CM and OM phenotypes and were associated with the presence of unique nevoid melanomas and highly atypical nevoid melanoma-like melanocytic proliferations (NEMMPs). Interestingly, 7/14 germline variants identified to date reside in C-terminus suggesting that the BRCA1 binding domain is important in cancer predisposition.

Conclusion

Germline BAP1 mutations are associated with a more aggressive OM phenotype and a recurrent phenotypic complex of cutaneous/ocular melanoma, atypical melanocytic proliferations and other internal neoplasms (ie. COMMON syndrome), which could be a useful clinical marker for constitutive BAP1 inactivation.  相似文献   

9.

Background

The carboxysome is a bacterial microcompartment that consists of a polyhedral protein shell filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), the enzyme that catalyzes the first step of CO2 fixation via the Calvin-Benson-Bassham cycle.

Methodology/Principal Findings

To analyze the role of RubisCO in carboxysome biogenesis in vivo we have created a series of Halothiobacillus neapolitanus RubisCO mutants. We identified the large subunit of the enzyme as an important determinant for its sequestration into α-carboxysomes and found that the carboxysomes of H. neapolitanus readily incorporate chimeric and heterologous RubisCO species. Intriguingly, a mutant lacking carboxysomal RubisCO assembles empty carboxysome shells of apparently normal shape and composition.

Conclusions/Significance

These results indicate that carboxysome shell architecture is not determined by the enzyme they normally sequester. Our study provides, for the first time, clear evidence that carboxysome contents can be manipulated and suggests future nanotechnological applications that are based upon engineered protein microcompartments.  相似文献   

10.

Background

Elucidating the complex cell dynamics (divisions, movement, morphological changes, etc.) underlying embryonic development and adult tissue regeneration requires an efficient means to track cells with high fidelity in space and time. To satisfy this criterion, we developed a transgenic zebrafish line, called PhOTO, that allows photoconvertible optical tracking of nuclear and membrane dynamics in vivo.

Methodology

PhOTO zebrafish ubiquitously express targeted blue fluorescent protein (FP) Cerulean and photoconvertible FP Dendra2 fusions, allowing for instantaneous, precise targeting and tracking of any number of cells using Dendra2 photoconversion while simultaneously monitoring global cell behavior and morphology. Expression persists through adulthood, making the PhOTO zebrafish an excellent tool for studying tissue regeneration: after tail fin amputation and photoconversion of a ∼100µm stripe along the cut area, marked differences seen in how cells contribute to the new tissue give detailed insight into the dynamic process of regeneration. Photoconverted cells that contributed to the regenerate were separated into three distinct populations corresponding to the extent of cell division 7 days after amputation, and a subset of cells that divided the least were organized into an evenly spaced, linear orientation along the length of the newly regenerating fin.

Conclusions/Significance

PhOTO zebrafish have wide applicability for lineage tracing at the systems-level in the early embryo as well as in the adult, making them ideal candidate tools for future research in development, traumatic injury and regeneration, cancer progression, and stem cell behavior.  相似文献   

11.

Background

The B3 DNA binding domain includes five families: auxin response factor (ARF), abscisic acid-insensitive3 (ABI3), high level expression of sugar inducible (HSI), related to ABI3/VP1 (RAV) and reproductive meristem (REM). The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily.

Methodology

In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family.

Conclusions

Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.  相似文献   

12.

Background

Single cell network profiling (SCNP) utilizing flow cytometry measures alterations in intracellular signaling responses. Here SCNP was used to characterize Acute Myeloid Leukemia (AML) disease subtypes based on survival, DNA damage response and apoptosis pathways.

Methodology and Principal Findings

Thirty four diagnostic non-M3 AML samples from patients with known clinical outcome were treated with a panel of myeloid growth factors and cytokines, as well as with apoptosis-inducing agents. Analysis of induced Jak/Stat and PI3K pathway responses in blasts from individual patient samples identified subgroups with distinct signaling profiles that were not seen in the absence of a modulator. In vitro exposure of patient samples to etoposide, a DNA damaging agent, revealed three distinct “DNA damage response (DDR)/apoptosis” profiles: 1) AML blasts with a defective DDR and failure to undergo apoptosis; 2) AML blasts with proficient DDR and failure to undergo apoptosis; 3) AML blasts with proficiency in both DDR and apoptosis pathways. Notably, AML samples from clinical responders fell within the “DDR/apoptosis” proficient profile and, as well, had low PI3K and Jak/Stat signaling responses. In contrast, samples from clinical non responders had variable signaling profiles often with in vitro apoptotic failure and elevated PI3K pathway activity. Individual patient samples often harbored multiple, distinct, leukemia-associated cell populations identifiable by their surface marker expression, functional performance of signaling pathway in the face of cytokine or growth factor stimulation, as well as their response to apoptosis-inducing agents.

Conclusions and Significance

Characterizing and tracking changes in intracellular pathway profiles in cell subpopulations both at baseline and under therapeutic pressure will likely have important clinical applications, potentially informing the selection of beneficial targeted agents, used either alone or in combination with chemotherapy.  相似文献   

13.

Background

Exposure of adherent cells to DNA damaging agents, such as the bacterial cytolethal distending toxin (CDT) or ionizing radiations (IR), activates the small GTPase RhoA, which promotes the formation of actin stress fibers and delays cell death. The signalling intermediates that regulate RhoA activation and promote cell survival are unknown.

Principal Findings

We demonstrate that the nuclear RhoA-specific Guanine nucleotide Exchange Factor (GEF) Net1 becomes dephosphorylated at a critical inhibitory site in cells exposed to CDT or IR. Expression of a dominant negative Net1 or Net1 knock down by iRNA prevented RhoA activation, inhibited the formation of stress fibers, and enhanced cell death, indicating that Net1 activation is required for this RhoA-mediated responses to genotoxic stress. The Net1 and RhoA-dependent signals involved activation of the Mitogen-Activated Protein Kinase p38 and its downstream target MAPK-activated protein kinase 2.

Significance

Our data highlight the importance of Net1 in controlling RhoA and p38 MAPK mediated cell survival in cells exposed to DNA damaging agents and illustrate a molecular pathway whereby chronic exposure to a bacterial toxin may promote genomic instability.  相似文献   

14.

Background

Multiple cellular functions are compromised in amyotrophic lateral sclerosis (ALS). In familial ALS (FALS) with Cu/Zn superoxide dismutase (SOD1) mutations, the mechanisms by which the mutation in SOD1 leads to such a wide range of abnormalities remains elusive.

Methodology/Principal Findings

To investigate underlying cellular conditions caused by the SOD1 mutation, we explored mutant SOD1-interacting proteins in the spinal cord of symptomatic transgenic mice expressing a mutant SOD1, SOD1Leu126delTT with a FLAG sequence (DF mice). This gene product is structurally unable to form a functional homodimer. Tissues were obtained from both DF mice and disease-free mice expressing wild-type with FLAG SOD1 (WF mice). Both FLAG-tagged SOD1 and cross-linking proteins were enriched and subjected to a shotgun proteomic analysis. We identified 34 proteins (or protein subunits) in DF preparations, while in WF preparations, interactions were detected with only 4 proteins.

Conclusions/Significance

These results indicate that disease-causing mutant SOD1 likely leads to inadequate protein-protein interactions. This could be an early and crucial process in the pathogenesis of FALS.  相似文献   

15.

Background

The Schistosoma mansoni Venom-Allergen-Like proteins (SmVALs) are members of the SCP/TAPS (Sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7) protein superfamily, which may be important in the host-pathogen interaction. Some of these molecules were suggested by us and others as potential immunomodulators and vaccine candidates, due to their functional classification, expression profile and predicted localization. From a vaccine perspective, one of the concerns is the potential allergic effect of these molecules.

Methodology/Principal Findings

Herein, we characterized the putative secreted proteins SmVAL4 and SmVAL26 and explored the mouse model of airway inflammation to investigate their potential allergenic properties. The respective recombinant proteins were obtained in the Pichia pastoris system and the purified proteins used to produce specific antibodies. SmVAL4 protein was revealed to be present only in the cercarial stage, increasing from 0–6 h in the secretions of newly transformed schistosomulum. SmVAL26 was identified only in the egg stage, mainly in the hatched eggs'' fluid and also in the secretions of cultured eggs. Concerning the investigation of the allergic properties of these proteins in the mouse model of airway inflammation, SmVAL4 induced a significant increase in total cells in the bronchoalveolar lavage fluid, mostly due to an increase in eosinophils and macrophages, which correlated with increases in IgG1, IgE and IL-5, characterizing a typical allergic airway inflammation response. High titers of anaphylactic IgG1 were revealed by the Passive Cutaneous Anaphylactic (PCA) hypersensitivity assay. Additionally, in a more conventional protocol of immunization for vaccine trials, rSmVAL4 still induced high levels of IgG1 and IgE.

Conclusions

Our results suggest that members of the SmVAL family do present allergic properties; however, this varies significantly and therefore should be considered in the design of a schistosomiasis vaccine. Additionally, the murine model of airway inflammation proved to be useful in the investigation of allergic properties of potential vaccine candidates.  相似文献   

16.
17.
18.

Background

SecTRAPs (selenium compromised thioredoxin reductase-derived apoptotic proteins) can be formed from the selenoprotein thioredoxin reductase (TrxR) by targeting of its selenocysteine (Sec) residue with electrophiles, or by its removal through C-terminal truncation. SecTRAPs are devoid of thioredoxin reductase activity but can induce rapid cell death in cultured cancer cell lines by a gain of function.

Principal Findings

Both human and rat SecTRAPs killed human A549 and HeLa cells. The cell death displayed both apoptotic and necrotic features. It did not require novel protein synthesis nor did it show extensive nuclear fragmentation, but it was attenuated by use of caspase inhibitors. The redox active disulfide/dithiol motif in the N-terminal domain of TrxR had to be maintained for manifestation of SecTRAP cytotoxicity. Stopped-flow kinetics showed that NADPH can reduce the FAD moiety in SecTRAPs at similar rates as in native TrxR and purified SecTRAPs could maintain NADPH oxidase activity, which was accelerated by low molecular weight substrates such as juglone. In a cellular context, SecTRAPs triggered extensive formation of reactive oxygen species (ROS) and consequently antioxidants could protect against the cell killing by SecTRAPs.

Conclusions

We conclude that formation of SecTRAPs could contribute to the cytotoxicity seen upon exposure of cells to electrophilic agents targeting TrxR. SecTRAPs are prooxidant killers of cells, triggering mechanisms beyond those of a mere loss of thioredoxin reductase activity.  相似文献   

19.

Background

We have earlier shown that Bacille Calmette-Guérin (BCG) vaccine-specific IgG Antibodies in Lymphocyte Supernatant (ALS) can be used for diagnosis of active tuberculosis (TB) in adults and children.

Methodology/Principal Findings

The ALS method was validated in a larger cohort (n = 212) of patients with suspicion of pulmonary TB using multiple antigens (BCG, LAM, TB15.3, TB51A, CFP10-ESAT6-A, CFP, CW) from Mycobacterium tuberculosis. The sensitivity and specificity of the ALS assay was calculated using non-TB patients as controls. The sensitivity and the specificity were highest with BCG vaccine (90% and 88% respectively) followed by LAM (89% and 87% respectively). Simultaneous assessment of multiple antigen-specific antibodies increased sensitivity (91%) and specificity (88%). Using higher lymphocyte count in smaller volume of culture media increased detection and reduced the assay duration to ∼30 hrs. Twenty one patients with clinical findings strongly suggestive of TB finally diagnosed as non-TB patients were positive by the ALS assay, of which 9 (43%) were positive for 7 antigens and 19 (90%) for at least 3 antigens.

Conclusions/Significance

Our findings show that simultaneous detection of antigens improves the diagnostic potential of the ALS assay; the modified method increases sensitivity and can provide results in <48 hours, and enable detection of some cases of pulmonary TB that are not detectable by standard methods.  相似文献   

20.

Objective

To investigate the effects of social isolation on oral mucosal healing in rats, and to determine if wound-associated genes and microRNAs (miRNAs) may contribute to this response.

Methods

Rats were group housed or socially isolated for 4 weeks before a 3.5 mm wound was placed on the hard oral palate. Wound closure was assessed daily and tissues were collected for determination of gene expression levels and miRNAs (i.e., miR-29a,b,c and miR-203). The predicted target of these microRNAs (i.e., vascular endothelial growth factor A, VEGFA) was functionally validated.

Results

Social isolation stress delayed the healing process of oral palatal mucosal wounds in rats. Lower mRNA levels of interleukin-1β (IL1β), macrophage inflammatory p r o t e i n-1α (MIP1α), fibroblast growth factor 7 (FGF7), and VEGFA were found in the biopsied tissues of isolated animals on days 1 and/or 3 post-wounding. Intriguingly, the isolated rats persistently exhibited higher levels of miR-29 family members and miR-203. Our results confirmed that VEGFA is a direct target of these miRNAs, as both miR-29a,c and miR-203 strongly and specifically suppressed endogenous VEGFA expression in vitro.

Conclusions

This study in rats demonstrates for the first time that social isolation delays oral mucosal healing, and suggests a potential role for healing-associated gene and miRNA interactions during this process via modulation of VEGF expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号