首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

To determine the incidence and effect on mortality of early acute kidney injury in severely injured trauma patients using the Acute Kidney Injury Network creatinine criteria.

Design

A retrospective cohort study of severely injured trauma patients admitted to the shock trauma intensive care unit.

Setting

Texas Trauma Institute, a state designated level I trauma unit certified by the American College of Surgeons Committee on Trauma.

Patients

901 severely injured trauma patients admitted over a 15 month period to the shock trauma intensive care unit.

Interventions

Retrospective analysis of prospectively collected data abstracted from an electronic trauma database.

Measurements and Main Results

Of 901 eligible patients admitted to the shock trauma intensive care unit after traumatic injury, 54 patients (6%) developed acute kidney injury, of whom 10 (19%) required renal replacement therapy. The 30-day mortality rate for the entire cohort was 83/901 (9.2%). Patients with early acute kidney injury had a mortality rate of 16/54 (29.6%). When corrected for multiple covariates including injury severity scores, the development of early acute kidney injury was associated with a significantly higher risk of death at 30 days with an OR of 3.4 (95% CI 1.6-7.4).

Conclusions

Applying the Acute Kidney Injury Network creatinine criteria in severely injured trauma patients, the incidence of early acute kidney injury was 6%. After correction for injury severity, development of early acute kidney injury was independently associated with significantly higher 30-day mortality.  相似文献   

2.
3.

Background

Stromal cell-derived factor-1(SDF-1) is a chemotactic and angiogenic factor that mediates the repair of various tissues. As macrophages are important contributors to ischemic kidney injury, we examine the role of SDF-1 in a rodent model of ischemia-reperfusion (I/R) injury.

Methods

Male wild-type (WT) (C57BL/6) mice were subjected to bilateral I/R injury or sham operation in the presence or absence of macrophage depletion (liposomal clodronate [0.2 ml/20–25 g body weight i.p.]). Macrophage accumulation was assessed by immunohistochemistry. Tissue levels of SDF-1 (ELISA) and SDF-1 mRNA expression (real-time PCR) were measured. The cellular location of SDF-1 was assessed using immunohistochemical staining.

Results

Immunofluorescence staining of renal tissue sections confirmed macrophage depletion by liposomal clodronate. SDF-1 production was elevated in response to I/R injury and was significantly increased upon macrophage depletion. SDF-1 positive cells initially appeared initially in the cortex, and subsequently diffused to the outer medulla after I/R injury.

Conclusions

Our study demonstrates that SDF-1 is significantly upregulated during renal I/R. We hypothesize that SDF-1 upregulation may be an important macrophage effector mechanism during I/R injury.  相似文献   

4.
5.

Background

Notch signaling plays a critical role in the maintenance of intestinal crypt epithelial cell proliferation. The aim of this study was to investigate the role of Notch signaling in the proliferation and regeneration of intestinal epithelium after intestinal ischemia reperfusion (I/R) injury.

Methods

Male Sprague-Dawley rats were subjected to sham operation or I/R by occlusion of the superior mesenteric artery (SMA) for 20 min. Intestinal tissue samples were collected at 0, 1, 2, 4, and 6 h after reperfusion. Proliferation of the intestinal epithelium was evaluated by immunohistochemical staining of proliferating nuclear antigen (PCNA). The mRNA and protein expression levels of Notch signaling components were examined using Real-time PCR and Western blot analyses. Immunofluorescence was also performed to detect the expression and location of Jagged-2, cleaved Notch-1, and Hes-1 in the intestine. Finally, the γ-secretase inhibitor DAPT and the siRNA for Jagged-2 and Hes-1 were applied to investigate the functional role of Notch signaling in the proliferation of intestinal epithelial cells in an in vitro IEC-6 culture system.

Results

I/R injury caused increased intestinal crypt epithelial cell proliferation and increased mRNA and protein expression of Jagged-2, Notch-1, and Hes-1. The immunofluorescence results further confirmed increased protein expression of Jagged-2, cleaved Notch-1, and Hes-1 in the intestinal crypts. The inhibition of Notch signaling with DAPT and the suppression of Jagged-2 and Hes-1 expression using siRNA both significantly inhibited the proliferation of IEC-6 cells.

Conclusion

The Jagged-2/Notch-1/Hes-1 signaling pathway is involved in intestinal epithelium regeneration early after I/R injury by increasing crypt epithelial cell proliferation.  相似文献   

6.
7.
8.
9.

Background

Ischemia-reperfusion (I/R) injury associated with living donor liver transplantation impairs liver graft regeneration. Mesenchymal stem cells (MSCs) are potential cell therapeutic targets for liver disease. In this study, we demonstrate the impact of MSCs against hepatic I/R injury and hepatectomy.

Methodology/Principal Findings

We used a new rat model in which major hepatectomy with I/R injury was performed. Male Lewis rats were separated into two groups: an MSC group given MSCs after reperfusion as treatment, and a Control group given phosphate-buffered saline after reperfusion as placebo. The results of liver function tests, pathologic changes in the liver, and the remnant liver regeneration rate were assessed. The fate of transplanted MSCs in the luciferase-expressing rats was examined by in vivo luminescent imaging. The MSC group showed peak luciferase activity of transplanted MSCs in the remnant liver 24 h after reperfusion, after which luciferase activity gradually declined. The elevation of serum alanine transaminase levels was significantly reduced by MSC injection. Histopathological findings showed that vacuolar change was lower in the MSC group compared to the Control group. In addition, a significantly lower percentage of TUNEL-positive cells was observed in the MSC group compared with the controls. Remnant liver regeneration rate was accelerated in the MSC group.

Conclusions/Significance

These data suggest that MSC transplantation provides trophic support to the I/R-injured liver by inhibiting hepatocellular apoptosis and by stimulating regeneration.  相似文献   

10.

Background

Acute respiratory distress syndrome (ARDS) is a disease associated with a high mortality rate. The initial phase is characterized by induction of inflammatory cytokines and chemokines and influx of circulating inflammatory cells, including macrophages which play a pivotal role in the innate and adaptive immune responses to injury. Growing evidence points to phenotypic heterogeneity and plasticity between various macrophage activation states.

Methods

In this study, gene expression in alveolar macrophages and circulating leukocytes from healthy control subjects and patients with ARDS was assessed by mRNA microarray analysis.

Results

Both alveolar macrophages and circulating leukocytes demonstrated up-regulation of genes encoding chemotactic factors, antimicrobial peptides, chemokine receptors, and matrix metalloproteinases. Two genes, the pro-inflammatory S100A12 and the anti-inflammatory IL-1 decoy receptor IL-1R2 were significantly induced in both cell populations in ARDS patients, which was confirmed by protein quantification. Although S100A12 levels did not correlate with disease severity, there was a significant association between early plasma levels of IL-1R2 and APACHE III scores at presentation. Moreover, higher levels of IL-1R2 in plasma were observed in non-survivors as compared to survivors at later stages of ARDS.

Conclusions

These results suggest a hybrid state of alveolar macrophage activation in ARDS, with features of both alternative activation and immune tolerance/deactivation.. Furthermore, we have identified a novel plasma biomarker candidate in ARDS that correlates with the severity of systemic illness and mortality.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0190-x) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of the kidney excretory function and is strongly associated with increased early and long-term patient morbidity and mortality. Early diagnosis of AKI is challenging; therefore we profiled plasma microRNA in an effort to identify potential diagnostic circulating markers of renal failure. The goal of the present study was to investigate the dynamic relationship of circulating and renal microRNA profiles within the first 24 hours after bilateral ischemia-reperfusion kidney injury in mice.

Methodology/Principal Findings

Bilateral renal ischemia was induced in C57Bl/6 mice (n = 10 per group) by clamping the renal pedicle for 27 min. Ischemia-reperfusion caused highly reproducible, progressive, concordant elevation of miR-714, miR-1188, miR-1897-3p, miR-877*, and miR-1224 in plasma and kidneys at 3, 6 and 24 hours after acute kidney injury compared to the sham-operated mice (n = 5). These dynamics correlated with histologic findings of kidney injury and with a conventional plasma marker of renal dysfunction (creatinine). Pathway analysis revealed close association between miR-1897-3p and Nucks1 gene expression, which putative downstream targets include genes linked to renal injury, inflammation and apoptosis.

Conclusions/Significance

Systematic profiling of renal and plasma microRNAs in the early stages of experimental AKI provides the first step in advancing circulating microRNAs to the level of promising novel biomarkers.  相似文献   

12.

Background and Purpose

Retinal swelling, leading to irreversible visual impairment, is an important early complication in retinal ischemia/reperfusion (I/R) injury. Diosmin, a naturally occurring flavonoid glycoside, has been shown to have antioxidative and anti-inflammatory effects against I/R injury. The present study was performed to evaluate the retinal microvascular protective effect of diosmin in a model of I/R injury.

Methods

Unilateral retinal I/R was induced by increasing intraocular pressure to 110 mm Hg for 60 min followed by reperfusion. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. Rats were evaluated for retinal functional injury by electroretinogram (ERG) just before sacrifice. Retinas were harvested for HE staining, immunohistochemistry assay, ELISA, and western blotting analysis. Evans blue (EB) extravasation was determined to assess blood–retinal barrier (BRB) disruption and the structure of tight junctions (TJ) was examined by transmission electron microscopy.

Results

Diosmin significantly ameliorated the reduction of b-wave, a-wave, and b/a ratio in ERG, alleviated retinal edema, protected the TJ structure, and reduced EB extravasation. All of these effects of diosmin were associated with increased zonular occluden-1 (ZO-1) and occludin protein expression and decreased VEGF/PEDF ratio.

Conclusions

Maintenance of TJ integrity and reduced permeability of capillaries as well as improvements in retinal edema were observed with diosmin treatment, which may contribute to preservation of retinal function. This protective effect of diosmin may be at least partly attributed to its ability to regulate the VEGF/PEDF ratio.  相似文献   

13.

Objective

To evaluate the impact of mesenchymal stem cells (MSCs) against hepatic I/R injury and explore the role of N-acetyltransferase 8 (NAT8) in the process.

Methods

We investigated the potential of injected MSCs systemically via the tail vein in healing injuried liver of the SD rat model of 70% hepatic I/R injury by measuring the biochemical and pathologic alterations. Subsequently, we evaluated the expression levels of NAT8 by western blotting in vivo. Concurrently, hydrogen peroxide (H2O2)-induced apoptosis in the human normal liver cell line L02 was performed in vitro to evaluate the protective effects of MSC conditioned medium (MSC-CM) on L02 cells. In addition, we downregulated and upregulated NAT8 expression in L02 cells and induced apoptosis by using H2O2 to study the protective role of NAT8.

Results

MSCs implantation led to a significant reduced liver enzyme levels, an advanced protection in the histopathological findings of the acutely injured liver and a significantly lower percentage of TUNEL-positive cells, which were increased after I/R injury. In vitro assays, MSC-CM inhibited hepatocyte apoptosis induced by H2O2. Moreover, overexpression or downregulation of NAT8 prevented or aggravated hepatocyte apoptosis induced by H2O2, respectively.

Conclusions

MSC transplantation provides support to the I/R-injured liver by inhibiting hepatocellular apoptosis and stimulating NAT8 regeneration.  相似文献   

14.
15.

Background

Hepatic ischemia-reperfusion (I/R) is a well-studied model of liver injury and has demonstrated a biphasic injury followed by recovery and regeneration. Microparticles (MPs) are a developing field of study and these small membrane bound vesicles have been shown to have effector function in other physiologic and pathologic states. This study was designed to quantify the levels of MPs from various cell origins–platelets, neutrophils, and endolethial cells–following hepatic ischemia-reperfusion injury.

Methods

A murine model was used with mice undergoing 90 minutes of partial hepatic ischemia followed by various times of reperfusion. Following reperfusion, plasma samples were taken and MPs of various cell origins were labeled and levels were measured using flow cytometry. Additionally, cell specific MPs were further assessed by Annexin V, which stains for the presence of phosphatidylserine, a cell surface marker linked to apoptosis. Statistical analysis was performed using one-way analysis of variance with subsequent Student-Newman-Keuls test with data presented as the mean and standard error of the mean.

Results

MPs from varying sources show an increase in circulating levels following hepatic I/R injury. However, the timing of the appearance of different MP subtypes differs for each cell type. Platelet and neutrophil-derived MP levels demonstrated an acute elevation following injury whereas endothelial-derived MP levels demonstrated a delayed elevation.

Conclusion

This is the first study to characterize circulating levels of cell-specific MPs after hepatic I/R injury and suggests that MPs derived from platelets and neutrophils serve as markers of inflammatory injury and may be active participants in this process. In contrast, MPs derived from endothelial cells increase after the injury response during the reparative phase and may be important in angiogenesis that occurs in the regenerating liver.  相似文献   

16.

Background

Mechanical ventilation of preterm babies increases survival but can also cause ventilator-induced lung injury (VILI), leading to the development of bronchopulmonary dysplasia (BPD). It is not known whether shear stress injury from gases flowing into the preterm lung during ventilation contributes to VILI.

Methods

Preterm lambs of 131 days’ gestation (term = 147 d) were ventilated for 2 hours with a bias gas flow of 8 L/min (n = 13), 18 L/min (n = 12) or 28 L/min (n = 14). Physiological parameters were measured continuously and lung injury was assessed by measuring mRNA expression of early injury response genes and by histological analysis. Control lung tissue was collected from unventilated age-matched fetuses. Data were analysed by ANOVA with a Tukey post-hoc test when appropriate.

Results

High bias gas flows resulted in higher ventilator pressures, shorter inflation times and decreased ventilator efficiency. The rate of rise of inspiratory gas flow was greatest, and pulmonary mRNA levels of the injury markers, EGR1 and CTGF, were highest in lambs ventilated with bias gas flows of 18 L/min. High bias gas flows resulted in increased cellular proliferation and abnormal deposition of elastin, collagen and myofibroblasts in the lung.

Conclusions

High ventilator bias gas flows resulted in increased lung injury, with up-regulation of acute early response genes and increased histological lung injury. Bias gas flows may, therefore, contribute to VILI and BPD.  相似文献   

17.
18.

Background

Hydrogen sulfide (H2S), a novel gaseous mediator, has been recognized as an important neuromodulator and neuroprotective agent in the nervous system. The present study was undertaken to study the effects of exogenous H2S on ischemia/reperfusion (I/R) injury of spinal cord and the underlying mechanisms.

Methods

The effects of exogenous H2S on I/R injury were examined by using assessment of hind motor function, spinal cord infarct zone by Triphenyltetrazolium chloride (TTC) staining. Autophagy was evaluated by expressions of Microtubule associated protein 1 light chain 3 (LC3) and Beclin-1 which were determined by using Quantitative Real-Time PCR and Western blotting, respectively.

Results

Compared to I/R injury groups, H2S pretreatment had reduced spinal cord infarct zone, improved hind motor function in rats. Quantitative Real-Time PCR or Western blotting results showed that H2S pretreatment also downregulated miR-30c expression and upregulated Beclin-1 and LC3II expression in spinal cord. In vitro, miR-30c was showed to exert negative effect on Beclin-1 expression by targeting its 3’UTR in SY-SH-5Y cells treated with Oxygen, Glucose Deprivation (OGD). In rat model of I/R injury, pretreatment of pre-miR-30c or 3-MA (an inhibitor for autophagy) can abrogated spinal cord protective effect of H2S.

Conclusion

H2S protects spinal cord and induces autophagy via miR-30c in a rat model of spinal cord hemia-reperfusion injury.  相似文献   

19.

Background

Liver ischemia reperfusion (I/R) injury is a common pathophysiological process in many clinical settings. Carvacrol, a food additive commonly used in essential oils, has displayed antimicrobials, antitumor and antidepressant-like activities. In the present study, we investigated the protective effects of carvacrol on I/R injury in the Wistar rat livers and an in vitro hypoxia/restoration (H/R) model.

Methods

The hepatoportal vein, hepatic arterial and hepatic duct of Wistar rats were isolated and clamped for 30 min, followed by a 2 h reperfusion. Buffalo rat liver (BRL) cells were incubated under hypoxia for 4 h, followed normoxic conditions for 10 h to establish the H/R model in vitro. Liver injury was evaluated by measuring serum levels of alanine aminotransferase (ALT) and aspatate aminotransferase (AST), and hepatic levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondiadehyde (MDA), and hepatic histology and TUNEL staining. MTT assay, flow cytometric analysis and Hoechst 33258 staining were used to evaluate the proliferation and apoptosis of BRL cells in vitro. Protein expression was examined by Western Blot analysis.

Results

Carvacrol protected against I/R-induced liver damage, evidenced by significantly reducing the serum levels of ALT and AST, histological alterations and apoptosis of liver cells in I/R rats. Carvacrol exhibited anti-oxidative activity in the I/R rats, reflected by significantly reducing the activity of SOD and the content of MDA, and restoring the activity of CAT and the content of GSH, in I/R rats. In the in vitro assays, carvacrol restored the viability and inhibited the apoptosis of BRL cells, which were subjected to a mimic I/R injury induced by hypoxia. In the investigation on molecular mechanisms, carvacrol downregulated the expression of Bax and upregulated the expression of Bcl-2, thus inhibited the activation of caspase-3. Carvacrol was also shown to enhance the phosphorylation of Akt.

Conclusion

The results suggest that carvacrol could alleviate I/R-induced liver injury by its anti-oxidative and anti-apoptotic activities, and warrant a further investigation for using carvacrol to protect I/R injury in clinic.  相似文献   

20.
Wang L  Li C  Guo H  Kern TS  Huang K  Zheng L 《PloS one》2011,6(8):e23194

Background

Neuron loss, glial activation and vascular degeneration are common sequelae of ischemia-reperfusion (I/R) injury in ocular diseases. The present study was conducted to explore the ability of curcumin to inhibit retinal I/R injury, and to investigate underlying mechanisms of the drug effects.

Methodology/Principal Findings

Different dosages of curcumin were administered. I/R injury was induced by elevating the intraocular pressure for 60 min followed by reperfusion. Cell bodies, brn3a stained cells and TUNEL positive apoptotic cells in the ganglion cell layer (GCL) were quantitated, and the number of degenerate capillaries was assessed. The activation of glial cells was measured by the expression level of GFAP. Signaling pathways including IKK-IκBα, JAK-STAT1/3, ERK/MAPK and the expression levels of β-tubulin III and MCP-1 were measured by western blot analysis. Pre-treatment using 0.01%–0.25% curcumin in diets significantly inhibited I/R-induced cell loss in GCL. 0.05% curcumin pre-treatment inhibited I/R-induced degeneration of retinal capillaries, TUNEL-positive apoptotic cell death in the GCL, brn3a stained cell loss, the I/R-induced up-regulation of MCP-1, IKKα, p-IκBα and p-STAT3 (Tyr), and down-regulation of β-tubulin III. This dose showed no effect on injury-induced GFAP overexpression. Moreover, 0.05% curcumin administered 2 days after the injury also showed a vaso-protective effect.

Conclusions/Significance

Curcumin protects retinal neurons and microvessels against I/R injury. The beneficial effects of curcumin on neurovascular degeneration may occur through its inhibitory effects on injury-induced activation of NF-κB and STAT3, and on over-expression of MCP-1. Curcumin may therefore serve as a promising candidate for retinal ischemic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号