首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is considered a promising cancer therapeutic agent due to its ability to induce apoptosis in a variety of cancer cells, while sparing normal cells. However, many human tumors including acute myeloid leukemia (AML) are partially or completely resistant to monotherapy with TRAIL, limiting its therapeutic utility. Therefore, identification of factors that contribute to TRAIL resistance may facilitate future development of more effective TRAIL-based cancer therapies. Here, we report a previously unknown role for WT1 in mediating TRAIL resistance in leukemia. Knockdown of WT1 with shRNA rendered TRAIL-resistant myeloid leukemia cells sensitive to TRAIL-induced cell death, and re-expression of shRNA-resistant WT1 restored TRAIL resistance. Notably, TRAIL-mediated apoptosis in WT1-silenced cells was largely due to down-regulation of the antiapoptotic protein Bcl-xL. Moreover, WT1 expression strongly correlated with overexpression of Bcl-xL in AML cell lines and blasts from AML patients. Furthermore, we found that WT1 transactivates Bcl-xL by directly binding to its promoter. We previously showed that WT1 is a novel client protein of heat shock protein 90 (Hsp90). Consistent with this, pharmacological inhibition of Hsp90 resulted in reduced WT1 and Bcl-xL expression leading to increased sensitivity of leukemia cells to TRAIL-mediated apoptosis. Collectively, our results suggest that WT1-dependent Bcl-xL overexpression contributes to TRAIL resistance in myeloid leukemias.  相似文献   

3.
4.
Evi9, a common site of retroviral integration in BXH2 murine myeloid leukemias, encodes a C2H2 zinc finger protein and is overexpressed in these leukemic cells. To investigate a possible role of EVI9 in the human hematopoietic system, we isolated the cDNA clone of the human homologue. Human EVI9, located on the chromosome 2p13 region, contains an open reading frame of 797 amino acids that is 98.7% identical to the mouse protein. RT-PCR analysis of purified human hematopoietic cells showed that EVI9 is expressed in CD34-positive myeloid precursors, B cells, monocytes, and megakaryocytes, but only weakly in T lymphocytes, suggesting that EVI9 may play an important role in hematopoiesis. Furthermore, EVI9 was down-regulated during myeloid differentiation of HL60 cells induced by all-trans-retinoic acid, whereas the expression remained during monocytic differentiation induced by phorbol 12-myristate 13-acetate. These results indicate a distinct role for EVI9 in human hematopoietic cells and suggest that EVI9 may cause leukemia through inhibition of myeloid differentiation.  相似文献   

5.
6.
7.
8.
Ent-11 alpha-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F), an antitumor component, is a chemical compound isolated from Pteris semipinnata L (PsL), a Chinese traditional herb. We examined whether 5F could affect apoptosis in human colon cancer HT-29 cells, and test whether and how the over-expression of Bcl-2 and Bcl-xL could offset the effect of 5F on cell growth. The result demonstrated that 5F significantly induced apoptosis of HT-29, as shown by MTT assay and DNA fragmentation measurement. Treatment of HT-29 with 5F increased both p38 and iNOS levels, suggesting these two molecules may contribute to the apoptotic effect of 5F. Over-expression of Bcl-2 or Bcl-xL attenuated the increase of p38 and iNOS induced by 5F. The cells with Bcl-2 or Bcl-xL over-expression showed an elevation of nuclear factor kappa B (NF-kappa B) activity, accompanying a significant reduction of 5F-induced apoptosis. Furthermore, inhibition of NF-kappa B by I k B alpha SR, which is a powerful inhibitor of NF-kappa B, restored the ability of 5F to induce apoptosis in the cells transfected with Bcl-2. These data strongly indicated that the apoptotic effect of 5F on HT-29 was closely associated with the activity of NF-kappa B, which was up-regulated by Bcl-2 and Bcl-xL. In conclusion, 5F induced apoptosis in HT-29 cells and this apoptotic effect was associated with the high level of p38 and iNOS expression. The apoptotic effect of 5F could be significantly offset by over-expression of either Bcl-2 or Bcl-xL. Bcl-2, and to the less extent, Bcl-xL, were able to increase the activity of NF-kappa B, which was a known anti-apoptotic molecule in human colon cancer cells.  相似文献   

9.
10.
11.
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that accumulate in response to tumor progression. Compelling data from mouse models and human cancer patients showed that tumor-induced inflammatory mediators induce MDSC differentiation. However, the mechanisms underlying MDSC persistence is largely unknown. Here, we demonstrated that tumor-induced MDSCs exhibit significantly decreased spontaneous apoptosis as compared with myeloid cells with the same phenotypes from tumor-free mice. Consistent with the decreased apoptosis, cell surface Fas receptor decreased significantly in tumor-induced MDSCs. Screening for changes of key apoptosis mediators downstream the Fas receptor revealed that expression levels of IRF8 and Bax are diminished, whereas expression of Bcl-xL is increased in tumor-induced MDSCs. We further determined that IRF8 binds directly to Bax and Bcl-x promoter in primary myeloid cells in vivo, and IRF8-deficient MDSC-like cells also exhibit increased Bcl-xL and decreased Bax expression. Analysis of CD69 and CD25 levels revealed that cytotoxic T lymphocytes (CTLs) are partially activated in tumor-bearing hosts. Strikingly, FasL but not perforin and granzymes were selectively activated in CTLs in the tumor-bearing host. ABT-737 significantly increased the sensitivity of MDSCs to Fas-mediated apoptosis in vitro. More importantly, ABT-737 therapy increased MDSC spontaneous apoptosis and decreased MDSC accumulation in tumor-bearing mice. Our data thus determined that MDSCs use down-regulation of IRF8 to alter Bax and Bcl-xL expression to deregulate the Fas-mediated apoptosis pathway to evade elimination by host CTLs. Therefore, targeting Bcl-xL is potentially effective in suppression of MDSC persistence in cancer therapy.  相似文献   

12.
Evi9, a common site of retroviral integration in BXH2 murine myeloid leukemias, encodes a C2H2 zinc finger protein and is overexpressed in these leukemic cells. To investigate a possible role of EVI9 in the human hematopoietic system, we isolated the cDNA clone of the human homologue. Human EVI9, located on the chromosome 2p13 region, contains an open reading frame of 797 amino acids that is 98.7% identical to the mouse protein. RT-PCR analysis of purified human hematopoietic cells showed that EVI9 is expressed in CD34-positive myeloid precursors, B cells, monocytes, and megakaryocytes, but only weakly in T lymphocytes, suggesting that EVI9 may play an important role in hematopoiesis. Furthermore, EVI9 was down-regulated during myeloid differentiation of HL60 cells induced by all-trans-retinoic acid, whereas the expression remained during monocytic differentiation induced by phorbol 12-myristate 13-acetate. These results indicate a distinct role for EVI9 in human hematopoietic cells and suggest that EVI9 may cause leukemia through inhibition of myeloid differentiation.  相似文献   

13.
14.
15.
16.
EVI1 is a complex protein required for embryogenesis and inappropriately expressed in many types of human myeloid leukemia. Earlier we showed that the forced expression of EVI1 in murine hematopoietic precursor cells leads to their abnormal differentiation and increased proliferation. In this report, we show that EVI1 physically interacts with BRG1 and its functional homolog BRM in mammalian cells. We found that the C terminus of EVI1 interacts strongly with BRG1 and that the central and C-terminal regions of BRG1 are involved in EVI1-BRG1 interaction. Using reporter gene assays, we demonstrate that EVI1 activates the E2F1 promoter in NIH3T3 cells but not in BRG1-negative SW13 cells. Ectopic expression of BRG1 is able to repress the E2F1 promoter in vector-transfected SW13 cells but not in EVI1-transfected SW13 cells. Finally, we show that EVI1 up-regulates cell proliferation in BRG1-positive 32Dcl3 cells but not in BRG1-negative SW13 cells. Taken together, these data support the hypothesis that the interaction with BRG1 is important for up-regulation of cell-growth by EVI1.  相似文献   

17.
We explored the role of the NF-kappa B pathway in the survival of primary human CD4+ T lymphocytes during CD28 costimulation. Transduction of proliferating CD4+ T cells with a tetracycline-regulated retrovirus encoding for a dominant-interfering, degradation-resistant I-kappaBalpha (inhibitor of kappa B alpha factor) mutant induced apoptosis. Using DNA arrays, we show that Bcl-xL features as a prominent anti-apoptotic member among a number of early CD28-inducible genes. A 1.2-kb segment of the proximal Bcl-xL promoter, linked to a luciferase reporter, responded to CD3/CD28 stimulation in Jurkat cells. Mutation of an NF-kappa B site around -840 decreased, while ectopic expression of I-kappa B kinase-beta (IKK beta) enhanced reporter gene activity. Na+-salicylate and cyclopentenone PGs, direct inhibitors of IKK beta, interfered in the activation of the Bcl-xL promoter and induced apoptosis in CD28-costimulated CD4+ T cells. Moreover, salicylate blocked nuclear localization of NF-kappa B factors that bind to the NF-kappa B binding site in the Bcl-xL promoter, as well as the expression of Bcl-xL protein. HuT-78, a lymphoblastoid T cell line with constitutive NF-kappa B activity, contained elevated levels of Bcl-xL protein and, similar to proliferating CD4+ T cells, was resistant to apoptotic stimuli such as anti-Fas and TNF-alpha. In contrast, the same stimuli readily induced apoptosis in a Jurkat T cell clone with no detectable Bcl-xL expression. Jurkat BMS2 cells also differed from HuT-78 in collapse of mitochondrial membrane potential and superoxide generation in the mitochondrium. Taken together, these data demonstrate that CD3/CD28-induced activation of IKK beta and expression of Bcl-xL promote the survival of primary human CD4+ T lymphocytes.  相似文献   

18.
High expression of the oncogene ecotropic viral integration site-1 (EVI-1) is an independent negative prognostic indicator of survival in leukemia patients. This study aimed to examine the effects of arsenic trioxide (ATO) on EVI-1 in acute myeloid leukemia (AML). Mononuclear cells were isolated from the bone marrow and peripheral blood of AML patients and healthy donors. EVI-1 expression in hematopoietic cells was evaluated by RT-qPCR and Western blot analysis. EVI-1 was highly expressed in both primary AML and leukemia cell lines (THP-1 and K562). ATO down-regulated EVI-1 mRNA in zebrafish in vivo as well as in primary leukemia cells and THP-1 and K562 cells in vitro. Additionally, ATO treatment induced apoptosis, down-regulated both EVI-1 mRNA and oncoprotein expression, increased the expression of pro-apoptosis proteins, and decreased the expression of anti-apoptotic proteins in leukemia cells in vitro. EVI-1 expression in leukemia cells (THP-1 and K562) transduced with EVI-1 siRNA was significantly reduced. Silencing EVI-1 had a significant effect on the activation of the JNK pathway and the induction of leukemia cell apoptosis. ATO may downregulate EVI-1 mRNA and oncoprotein levels and block the inhibitory effects of EVI-1 on the JNK pathway, which activates the JNK apoptotic pathway, thereby leading to the apoptosis of EVI-1 in AML patients.  相似文献   

19.
20.
Brefeldin A (BFA) is a natural product that affects the structure and function of the Golgi apparatus and is in development for cancer chemotherapy. We observed that a wide range of cancer cells could undergo DNA fragmentation associated with apoptosis after BFA treatment. This DNA fragmentation was induced within 15 h in HL60 leukemia cells and after 48 h in K562 leukemia and HT-29 colon carcinoma cells with BFA concentrations as low as 0.1 μM.The DNA fragmentation had the typical internucleosomal pattern in HL60 and HT-29 cells. Apoptotic cells were also detected by microscopy. BFA-induced apoptosis is p53-independent as HL60 and K562 cells are p53 null and HT-29 are p53 mutant cells. BFA could potentiate UCN-01 and staurosporine-induced DNA fragmentation in HL60 cells. Cyclin B1/Cdc2 kinase activity decreased after BFA treatment in HL60 cells, indicating that BFA-induced DNA fragmentation was independent of a cyclin B1/Cdc2 kinase upregulation pathway. Cycloheximide could not prevent BFA-induced DNA fragmentation in HL60 cells, suggesting that protein synthesis is not needed for HL60 cells to undergo apoptosis. On the contrary, cycloheximide blocked BFA-induced DNA fragmentation in HT-29 cells, indicating that apoptosis in HT-29 cells requires macromolecular synthesis. Cell-free system experiments suggested that cytosolic proteins play an important role in triggering DNA fragmentation during apoptosis induced by BFA. Our results show that transduction signaling pathways play central roles in apoptotic regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号