首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ARP2/3 complex: an actin nucleator comes of age   总被引:9,自引:0,他引:9  
The cellular functions of the actin cytoskeleton require precise regulation of both the initiation of actin polymerization and the organization of the resulting filaments. The actin-related protein-2/3 (ARP2/3) complex is a central player in this regulation. A decade of study has begun to shed light on the molecular mechanisms by which this powerful machine controls the polymerization, organization and recycling of actin-filament networks, both in vitro and in the living cell.  相似文献   

2.
Toxoplasma gondii belongs to the phylum Apicomplexa, a group of obligate intracellular parasites that rely on gliding motility to enter host cells. Drugs interfering with the actin cytoskeleton block parasite motility, host cell invasion, and egress from infected cells. Myosin A, profilin, formin 1, formin 2, and actin-depolymerizing factor have all been implicated in parasite motility, yet little is known regarding the importance of actin polymerization and other myosins for the remaining steps of the parasite lytic cycle. Here we establish that T. gondii formin 3 (TgFRM3), a newly described formin homology 2 domain (FH2)-containing protein, binds to Toxoplasma actin and nucleates rabbit actin assembly in vitro. TgFRM3 expressed as a transgene exhibits a patchy localization at several distinct structures within the parasite. Disruption of the TgFRM3 gene by double homologous recombination in a ku80-ko strain reveals no vital function for tachyzoite propagation in vitro, which is consistent with its weak level of expression in this life stage. Conditional stabilization of truncated forms of TgFRM3 suggests that different regions of the molecule contribute to distinct localizations. Moreover, expression of TgFRM3 lacking the C-terminal domain severely affects parasite growth and replication. This work provides a first insight into how this specialized formin, restricted to the group of coccidia, completes its actin-nucleating activity.  相似文献   

3.
The mammalian formin, mDia1, is an actin nucleation factor. Experiments in cells and in vitro show that the N-terminal region potently inhibits nucleation by the formin homology 2 (FH2) domain-containing C terminus and that RhoA binding to the N terminus partially relieves this inhibition. Cellular experiments suggest that potent inhibition depends upon the presence of the diaphanous auto-regulatory domain (DAD) C-terminal to FH2. In this study, we examine in detail the N-terminal and C-terminal regions required for this inhibition and for RhoA relief. Limited proteolysis of an N-terminal construct from residues 1-548 identifies two stable truncations: 129-548 and 129-369. Analytical ultracentrifugation suggests that 1-548 and 129-548 are dimers, whereas 129-369 is monomeric. All three N-terminal constructs inhibit nucleation by the full C terminus. Although inhibition by 1-548 is partially relieved by RhoA, inhibition by 129-548 or 129-369 is RhoA-resistant. At the C terminus, DAD deletion does not affect nucleation but decreases inhibitory potency of 1-548 by 20,000-fold. Synthetic DAD peptide binds both 1-548 and 129-548 with similar affinity and partially relieves nucleation inhibition. C-terminal constructs are stable dimers. Our conclusions are as follows: 1) DAD is an affinity-enhancing motif for auto-inhibition; 2) an N-terminal domain spanning residues 129-369 (called DID for diaphanous inhibitory domain) is sufficient for auto-inhibition; 3) a dimerization region C-terminal to DID increases the inhibitory ability of DID; and 4) DID alone is not sufficient for RhoA relief of auto-inhibition, suggesting that sequences N-terminal to DID are important to RhoA binding. An additional finding is that FH2 domain-containing constructs of mDia1 and mDia2 lose >75% nucleation activity upon freeze-thaw.  相似文献   

4.
Formin proteins are regulators of actin dynamics, mediating assembly of unbranched actin filaments. These multidomain proteins are defined by the presence of a Formin Homology 2 (FH2) domain. Previous work has shown that FH2 domains bind to filament barbed ends and move processively at the barbed end as the filament elongates. Here we report that two FH2 domains, from mammalian FRL1 and mDia2, also bundle filaments, whereas the FH2 domain from mDia1 cannot under similar conditions. The FH2 domain alone is sufficient for bundling. Bundled filaments made by either FRL1 or mDia2 are in both parallel and anti-parallel orientations. A novel property that might contribute to bundling is the ability of the dimeric FH2 domains from both FRL1 and mDia2 to dissociate and recombine. This property is not observed for mDia1. A difference between FRL1 and mDia2 is that FRL1-mediated bundling is competitive with barbed end binding, whereas mDia2-mediated bundling is not. Mutation of a highly conserved isoleucine residue in the FH2 domain does not inhibit bundling by either FRL1 or mDia2, but inhibits barbed end activities. However, the severity of this mutation varies between formins. For mDia1 and mDia2, the mutation strongly inhibits all effects of barbed end binding, but affects FRL1 much less strongly. Furthermore, our results suggest that the Ile mutation affects processivity. Taken together, our data suggest that the bundling activities of FRL1 and mDia2, while producing phenotypically similar bundles, differ in mechanistic detail.  相似文献   

5.
Coordination of microtubules and the actin cytoskeleton is important in several types of cell movement. mDia1 is a member of the formin-homology family of proteins and an effector of the small GTPase Rho. It contains the Rho-binding domain in its amino terminus and two distinct regions of formin homology, FH1 in the middle and FH2 in the carboxy terminus. Here we show that expression of mDia1(DeltaN3), an active mDia1 mutant containing the FH1 and FH2 regions without the Rho-binding domain, induces bipolar elongation of HeLa cells and aligns microtubules in parallel to F-actin bundles along the long axis of the cell. The cell elongation and microtubule alignment caused by this mutant is abolished by co-expression of an FH2-region fragment, and expression of mDia1(DeltaN3) containing point mutations in the FH2 region causes an increase in the amount of disorganized F-actin without cell elongation and microtubule alignment. These results indicate that mDia1 may coordinate microtubules and F-actin through its FH2 and FH1 regions, respectively.  相似文献   

6.
7.
Actin polymerizes to form part of the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hirsutum) actin gene in the organization of actin filaments in lobed cotyledon pavement cells and the highly elongated single‐celled trichomes that comprise cotton lint fibers. Using mapping‐by‐sequencing, virus‐induced gene silencing, and molecular modeling, we identified the causative mutation of the dominant dwarf Ligon lintless Li1 short fiber mutant as a single Gly65Val amino acid substitution in a polymerization domain of an actin gene, GhACT_LI1 (Gh_D04G0865). We observed altered cell morphology and disrupted organization of F‐actin in Li1 plant cells by confocal microscopy. Mutant leaf cells lacked interdigitation of lobes and F‐actin did not uniformly decorate the nuclear envelope. While wild‐type lint fiber trichome cells contained long longitudinal actin cables, the short Li1 fiber cells accumulated disoriented transverse cables. The polymerization‐defective Gly65Val allele in Li1 plants likely disrupts processive elongation of F‐actin, resulting in a disorganized cytoskeleton and reduced cell polarity, which likely accounts for the dominant gene action and diverse pleiotropic effects associated with the Li1 mutation. Lastly, we propose a model to account for these effects, and underscore the roles of actin organization in determining plant cell polarity, shape and plant growth.  相似文献   

8.
The diaphanous-related formins are actin nucleating and elongating factors. They are kept in an inactive state by an intramolecular interaction between the diaphanous inhibitory domain (DID) and the diaphanous-autoregulatory domain (DAD). It is considered that the dissociation of this autoinhibitory interaction upon binding of GTP-bound Rho to the GTPase binding domain next to DID induces exposure of the FH1-FH2 domains, which assemble actin filaments. Here, we isolated two diaphanous-related formins, mDia1 and Daam1, in platelet extracts by GTP-RhoA affinity column chromatography. We characterized them by a novel assay, where beads coated with the FH1-FH2-DAD domains of either mDia1 or Daam1 were incubated with platelet cytosol, and the assembled actin filaments were observed after staining with rhodamine-phalloidin. Both formins generated fluorescent filamentous structures on the beads. Quantification of the fluorescence intensity of the beads revealed that the initial velocity in the presence of mDia1 was more than 10 times faster than in the presence of Daam1. The actin assembly activities of both FH1-FH2-DADs were inhibited by adding cognate DID domains. GTP-RhoA, -RhoB, and -RhoC, but not GTP-Rac1 or -Cdc42, bound to both mDia1 and Daam1 and efficiently neutralized the inhibition by the DID domains. The association between RhoA and Daam1 was induced by thrombin stimulation in platelets, and RhoA-bound endogenous formins induced actin assembly, which was inhibited by the DID domains of Daam1 and mDia1. Thus, mDia1 and Daam1 are platelet actin assembly factors having distinct efficiencies, and they are directly regulated by Rho GTPases.  相似文献   

9.
A number of cellular processes use both microtubules and actin filaments, but the molecular machinery linking these two cytoskeletal elements remains to be elucidated in detail. Formins are actin-binding proteins that have multiple effects on actin dynamics, and one formin, mDia2, has been shown to bind and stabilize microtubules through its formin homology 2 (FH2) domain. Here we show that three formins, INF2, mDia1, and mDia2, display important differences in their interactions with microtubules and actin. Constructs containing FH1, FH2, and C-terminal domains of all three formins bind microtubules with high affinity (K(d) < 100 nM). However, only mDia2 binds microtubules at 1:1 stoichiometry, with INF2 and mDia1 showing saturating binding at approximately 1:3 (formin dimer:tubulin dimer). INF2-FH1FH2C is a potent microtubule-bundling protein, an effect that results in a large reduction in catastrophe rate. In contrast, neither mDia1 nor mDia2 is a potent microtubule bundler. The C-termini of mDia2 and INF2 have different functions in microtubule interaction, with mDia2's C-terminus required for high-affinity binding and INF2's C-terminus required for bundling. mDia2's C-terminus directly binds microtubules with submicromolar affinity. These formins also differ in their abilities to bind actin and microtubules simultaneously. Microtubules strongly inhibit actin polymerization by mDia2, whereas they moderately inhibit mDia1 and have no effect on INF2. Conversely, actin monomers inhibit microtubule binding/bundling by INF2 but do not affect mDia1 or mDia2. These differences in interactions with microtubules and actin suggest differential function in cellular processes requiring both cytoskeletal elements.  相似文献   

10.
Tetanus toxin is a powerful neurotoxin known to inhibit neurotransmitter release. The tetanus toxin light chain is a metalloprotease that cleaves some members of the synaptobrevin gene family with high specificity. Here, we report the expression of a synthetic gene encoding the tetanus toxin light chain in the seminiferous epithelium of transgenic mice. Spermatogenesis was severely impaired and mature spermatozoa were completely absent. Late spermatids exhibited pleomorphic shapes and acrosomal distortions. The number of Leydig cells was greatly increased. In situ hybridization analysis revealed that the toxin acts on Sertoli cells. Affected cells exhibited an aberrant distribution of actin filaments and many cells contained large vacuoles. Our results demonstrate that tetanus toxin is active in non-neuronal cells and suggest an important function for members of the synaptobrevin gene family during the late stages of spermatogenesis.  相似文献   

11.
Diaphanous-related formins (DRFs) are key regulators of actin cytoskeletal dynamics whose in vitro actin assembly activities are thought to be regulated by autoinhibition. However, the in vivo consequences of autoinhibition and the involvement of DRFs in specific biological processes are not well understood. In this study, we show that in the DRFs FRLalpha (formin-related gene in leukocytes alpha) and mouse diaphanous 1, autoinhibition regulates a novel membrane localization activity in vivo as well as actin assembly activity in vitro. In FRLalpha, the Rho family guanosine triphosphatase Cdc42 relieves the autoinhibition of both membrane localization and biochemical actin assembly activities. FRLalpha is required for efficient Fc-gamma receptor-mediated phagocytosis and is recruited to the phagocytic cup by Cdc42. These results suggest that mutual autoinhibition of biochemical activity and cellular localization may be a general regulatory principle for DRFs and demonstrate a novel role for formins in immune function.  相似文献   

12.
Microarray experiments designed to identify genes differentially expressed in the E11.5 lung and trachea showed that melanoma inhibitory activity (Mia1) was expressed only in the lung. Mia1 was abundantly expressed during early lung development, but was virtually absent by the end of gestation. Distal embryonic lung epithelium showed high levels of Mia1 expression, which was suppressed by treatment with either retinoic acid or the FGF signaling antagonist SU5402. Late-gestation fetuses in which lung epithelial hyperplasia was induced by misexpression of FGF7 or FGF10 showed continued expression of Mia1 in areas of aberrant morphogenesis. Mia1 expression was also significantly increased in urethane-induced lung adenomas. Treatment of E18.5 lung explants with exogenous MIA caused significant reductions in the expression of the lung differentiation markers Sftpa, Sftpb, Sftpc, and Abca3. Bitransgenic mice expressing MIA under the control of the SFTPC promoter after E16.5, the age when Mia1 is normally silenced, died from respiratory failure at birth with morphologically immature lungs associated with reduced levels of saturated phosphatidylcholine and mature SP-B. Microarray analysis showed significant reductions in the expression of Sftpa, Sftpb, Abca3, Aqp5, Lzp-s, Scd2, and Aytl2 in lungs misexpressing MIA. These results suggest that the silencing of Mia1 that occurs in late gestation may be required for maturation of the surfactant system.  相似文献   

13.
We previously identified a novel microtubule-destabilizing motif in CPAP that can disassemble microtubules. To examine further the CPAP function in human cells, we used siRNA to knockdown its expression. Our results showed that CPAP depletion arrested cells in mitosis and induced apoptosis. Interestingly, more than 40% of these mitotic cells had multiple spindle poles. Furthermore, inhibition of the kinesin Eg5 in CPAP-depleted cells resulted in monopolar spindles, indicating that Eg5 function is required for multipolar spindle formation in the absence of CPAP. Together, our results reveal a structural role for CPAP to maintain centrosome integrity and normal spindle morphology during cell division.  相似文献   

14.
K A Winans  D S King  V R Rao  C R Bertozzi 《Biochemistry》1999,38(36):11700-11710
Insects protect themselves against bacterial infection by secreting a battery of antimicrobial peptides into the hemolymph. Despite recent progress, important mechanistic questions, such as the precise bacterial targets, the nature of any cooperation that occurs between peptides, and the purpose of multiple peptide isoforms, remain largely unanswered. We report herein the chemical synthesis and preliminary mechanistic investigation of diptericin, an 82 residue glycopeptide that contains regions similar to two different types of antibacterial peptides. A revised, highly practical synthesis of the precursor N(alpha)-Fmoc-Thr(Ac(3)-alpha-D-GalNAc) allowed us to produce sufficient quantities of the glycopeptide for mechanistic assays. The synthetic, full-length polypeptide proved to be active in growth inhibition assays with an IC(50) of approximately 250 nM, a concentration similar to that found in the insect hemolymph. Biological analysis of diptericin fragments indicated that the main determinant of antibacterial activity lay in the C-terminal region that is similar to the attacin peptides, although the N-terminal segment, related to the proline-rich family of antibacterial peptides, augmented that activity by 100-fold. In all assays, activity appeared glycosylation independent. Circular dichroism of unglycosylated diptericin indicated that the peptide lacked structure both in plain buffer and in the presence of liposomes. Diptericin increased the permeability of the outer and inner membranes of Escherichia coli D22 cells, suggesting possible mechanisms of action. The ability to access glycopeptides of this type through chemical synthesis will facilitate further mechanistic studies.  相似文献   

15.
Four inborn errors of metabolism (IEMs) are known to cause hypermethioninemia by directly interfering with the methionine cycle. Hypermethioninemia is occasionally discovered incidentally, but it is often disregarded as an unspecific finding, particularly if liver disease is involved. In many individuals the hypermethioninemia resolves without further deterioration, but it can also represent an early sign of a severe, progressive neurodevelopmental disorder. Further investigation of unclear hypermethioninemia is therefore important. We studied two siblings affected by severe developmental delay and liver dysfunction. Biochemical analysis revealed increased plasma levels of methionine, S-adenosylmethionine (AdoMet), and S-adenosylhomocysteine (AdoHcy) but normal or mildly elevated homocysteine (Hcy) levels, indicating a block in the methionine cycle. We excluded S-adenosylhomocysteine hydrolase (SAHH) deficiency, which causes a similar biochemical phenotype, by using genetic and biochemical techniques and hypothesized that there was a functional block in the SAHH enzyme as a result of a recessive mutation in a different gene. Using exome sequencing, we identified a homozygous c.902C>A (p.Ala301Glu) missense mutation in the adenosine kinase gene (ADK), the function of which fits perfectly with this hypothesis. Increased urinary adenosine excretion confirmed ADK deficiency in the siblings. Four additional individuals from two unrelated families with a similar presentation were identified and shown to have a homozygous c.653A>C (p.Asp218Ala) and c.38G>A (p.Gly13Glu) mutation, respectively, in the same gene. All three missense mutations were deleterious, as shown by activity measurements on recombinant enzymes. ADK deficiency is a previously undescribed, severe IEM shedding light on a functional link between the methionine cycle and adenosine metabolism.  相似文献   

16.
Summary A lipoprotein with ice nucleator activity was purified from the hemolymph of the freezetolerant larvae of the craneflyTipula trivittata. Characterization of this lipoprotein ice nucleator (LPIN) showed that it differed from other previously described insect hemolymph lipoproteins which lack ice nucleator activity, by the presence of phosphatidylinositol (PI) at 11.0% by weight of the total phospholipid content. The potential roles of PI and other lipoprotein components in the ice nucleating activity were examined using various phospholipases, proteases, LPIN antibodies, borate compounds and various lipid-protein reconstitutions. It was found that phosphatidylinositol specific phospholipase C was the most effective phospholipase in eliminating the activity of the LPIN. Borate compounds effectively depressed activity. Treatment of the LPIN with protease also eliminated ice nucleator activity but the binding of LPIN specific antibody did not. Reconstitutions consisting of the native LPIN lipids, PI specific phospholipase-treated native LPIN lipids, or pure standard phospholipids with the apolipoproteins of the LPIN andManduca sexta larval lipoproteins gave evidence that both the apolipoproteins of the LPIN and PI are necessary for the ice nucleating activity.Abbreviations LPIN polyclonal antibodies to lipoprotein ice nucleator - ANOVA analysis of variance - Apo-I apolipoprotein I - Apo-II apolipoprotein II - LPIN lipoprotein ice nucleator - PAGE polyacrylamide gel electrophoresis - PAS Periodoacetate-Schiff's base - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - SCP supercooling point (ice nucleation temperature) - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TLC thin layer chromatography  相似文献   

17.
The fine regulation of actin polymerization is essential to control cell motility and architecture and to perform essential cellular functions. Formins are key regulators of actin filament assembly, known to processively elongate filament barbed ends and increase their polymerization rate. Different models have been extrapolated to describe the molecular mechanism governing the processive motion of formin FH2 domains at polymerizing barbed ends. Using negative stain electron microscopy, we directly identified for the first time two conformations of the mDia1 formin FH2 domains in interaction with the barbed ends of actin filaments. These conformations agree with the speculated open and closed conformations of the “stair-stepping” model. We observed the FH2 dimers to be in the open conformation for 79% of the data, interacting with the two terminal actin subunits of the barbed end while they interact with three actin subunits in the closed conformation. In addition, we identified and characterized the structure of single FH2 dimers encircling the core of actin filaments, and reveal their ability to spontaneously depart from barbed ends.  相似文献   

18.
《Developmental cell》2021,56(23):3288-3302.e5
  1. Download : Download high-res image (248KB)
  2. Download : Download full-size image
  相似文献   

19.
Members of the CELF family of RNA binding proteins have been implicated in alternative splicing regulation in developing heart. Transgenic mice that express a nuclear dominant-negative CELF protein specifically in the heart (MHC-CELFDelta) develop cardiac hypertrophy and dilated cardiomyopathy with defects in alternative splicing beginning as early as 3 weeks after birth. MHC-CELFDelta mice exhibit extensive cardiac fibrosis, severe cardiac dysfunction, and premature death. Interestingly, the penetrance of the phenotype is greater in females than in males despite similar levels of dominant-negative expression, suggesting that there is sex-specific modulation of splicing activity. The cardiac defects in MHC-CELFdelta mice are directly attributable to reduced levels of CELF activity, as crossing these mice with mice overexpressing CUG-BP1, a wild-type CELF protein, rescues defects in alternative splicing, the severity and incidence of cardiac hypertrophy, and survival. We conclude that CELF protein activity is required for normal alternative splicing in the heart in vivo and that normal CELF-mediated alternative splicing regulation is in turn required for normal cardiac function.  相似文献   

20.
The key role of APP for Alzheimer pathogenesis is well established. However, perinatal lethality of germline knockout mice lacking the entire APP family has so far precluded the analysis of its physiological functions for the developing and adult brain. Here, we generated conditional APP/APLP1/APLP2 triple KO (cTKO) mice lacking the APP family in excitatory forebrain neurons from embryonic day 11.5 onwards. NexCre cTKO mice showed altered brain morphology with agenesis of the corpus callosum and disrupted hippocampal lamination. Further, NexCre cTKOs revealed reduced basal synaptic transmission and drastically reduced long‐term potentiation that was associated with reduced dendritic length and reduced spine density of pyramidal cells. With regard to behavior, lack of the APP family leads not only to severe impairments in a panel of tests for learning and memory, but also to an autism‐like phenotype including repetitive rearing and climbing, impaired social communication, and deficits in social interaction. Together, our study identifies essential functions of the APP family during development, for normal hippocampal function and circuits important for learning and social behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号