首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diet-related obesity is a major metabolic disorder. Excessive fat mass is associated with type 2 diabetes, hepatic steatosis, and arteriosclerosis. Dysregulation of lipid metabolism and adipose tissue function contributes to diet-induced obesity. Here, we report that β-arrestin-1 knock-out mice are susceptible to diet-induced obesity. Knock-out of the gene encoding β-arrestin-1 caused increased fat mass accumulation and decreased whole-body insulin sensitivity in mice fed a high-fat diet. In β-arrestin-1 knock-out mice, we observed disrupted food intake and energy expenditure and increased macrophage infiltration in white adipose tissue. At the molecular level, β-arrestin-1 deficiency affected the expression of many lipid metabolic genes and inflammatory genes in adipose tissue. Consistently, transgenic overexpression of β-arrestin-1 repressed diet-induced obesity and improved glucose tolerance and systemic insulin sensitivity. Thus, our findings reveal that β-arrestin-1 plays a role in metabolism regulation.  相似文献   

2.
3.
The glucose-dependent insulinotropic polypeptide receptor (GIPr) has been implicated in high fat diet-induced obesity and is proposed as an anti-obesity target despite an uncertainty regarding the mechanism of action. To independently investigate the contribution of the insulinotropic effects and the direct effects on adipose tissue, we generated transgenic mice with targeted expression of the human GIPr to white adipose tissue or beta-cells, respectively. These mice were then cross-bred with the GIPr knock-out strain. The central findings of the study are that mice with GIPr expression targeted to adipose tissue have a similar high fat diet -induced body weight gain as control mice, significantly greater than the weight gain in mice with a general ablation of the receptor. Surprisingly, this difference was due to an increase in total lean body mass rather than a gain in total fat mass that was similar between the groups. In contrast, glucose-dependent insulinotropic polypeptide-mediated insulin secretion does not seem to be important for regulation of body weight after high fat feeding. The study supports a role of the adipocyte GIPr in nutrient-dependent regulation of body weight and lean mass, but it does not support a direct and independent role for the adipocyte or beta-cell GIPr in promoting adipogenesis.  相似文献   

4.
A recent hypothesis considers brown adipose tissue (BAT) to be an important source of diet-induced thermogenesis (DIT). In turn, DIT and thermogenesis in general are believed to be key factors in the control of obesity of laboratory rodents. This hypothesis was developed from the study of single gene mutant obese rodents. The present research tested this hypothesis in mice with polygenic control of growth and obesity, which is more characteristic of the type of genetic variation expected in human and other mammalian populations. Control and high fat diets were used to test responses of five genetically selected lines of mice showing different patterns of growth and obesity. All lines deposited more fat on the high fat diet, but the most obese line showed the largest increase in BAT and the lipid-free dry (LFD) component of BAT. Use of LFD per unit body weight gave results which supported the hypothesis being tested, but it was argued that this measure is misleading. When brown and white adipose tissue growth relative to body weight were examined, 2 of the 10 line-diet groups showed alterations in BAT growth patterns. However, it was concluded that BAT, if involved at all, was not a major factor in growth and obesity differences.  相似文献   

5.
It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.  相似文献   

6.
Amides of fatty acids with ethanolamine (FAE) are biologically active lipids that participate in a variety of biological functions, including the regulation of feeding. The polyunsaturated FAE anandamide (arachidonoylethanolamide) increases food intake by activating G protein-coupled cannabinoid receptors. On the other hand, the monounsaturated FAE oleoylethanolamide (OEA) reduces feeding and body weight gain by activating the nuclear receptor PPAR-alpha (peroxisome proliferator-activated receptor alpha). In the present report, we examined whether OEA can also influence energy utilization. OEA (1-20 microm) stimulated glycerol and fatty acid release from freshly dissociated rat adipocytes in a concentration-dependent and structurally selective manner. Under the same conditions, OEA had no effect on glucose uptake or oxidation. OEA enhanced fatty acid oxidation in skeletal muscle strips, dissociated hepatocytes, and primary cardiomyocyte cultures. Administration of OEA in vivo (5 mg kg(-1), intraperitoneally) produced lipolysis in both rats and wild-type mice, but not in mice in which PPAR-alpha had been deleted by homologous recombination (PPAR-alpha(-/-)). Likewise, OEA was unable to enhance lipolysis in adipocytes or stimulate fatty acid oxidation in skeletal muscle strips isolated from PPAR-alpha mice. The synthetic PPAR-alpha agonist Wy-14643 produced similar effects, which also were dependent on the presence of PPAR-alpha. Subchronic treatment with OEA reduced body weight gain and triacylglycerol content in liver and adipose tissue of diet-induced obese rats and wild-type mice, but not in obese PPAR-alpha(-/-) mice. The results suggest that OEA stimulates fat utilization through activation of PPAR-alpha and that this effect may contribute to its anti-obesity actions.  相似文献   

7.
Interscapular brown adipose tissue (iBAT) is formed during fetal development and stable for the life span of the mouse. In addition, brown adipocytes also appear in white fat depots (wBAT) between 10 and 21 days of age in mice maintained at a room temperature of 23 °C. However, this expression is transient. By 60 days of age the brown adipocytes have disappeared, but they can re-emerge if the adult mouse is exposed to the cold (5 °C) or treated with β3-adrenergic agonists. Since the number of brown adipocytes that can be induced in white fat influences the capacity of the mouse to resist the obese state, we determined the effects of the nutritional conditions on post-natal development (birth to 21 days) of wBAT and its long-term effects on diet-induced obesity (DIO). Under-nutrition caused essentially complete suppression of wBAT in inguinal fat at 21 days of age, as indicated by expression of Ucp1 and genes of mitochondrial structure and function based upon microarray and qRT-PCR analysis, whereas over-nutrition had no discernible effects on wBAT induction. Surprisingly, the suppression of wBAT at 21 days of age did not affect DIO in adult mice maintained at 23 °C, nor did it affect the reduction in obesity or cold tolerance when DIO mice were exposed to the cold at 5 °C for one week. Gene expression analysis indicated that mice raised under conditions that suppressed wBAT at 21 days of age were able to normally induce wBAT as adults. Therefore, neither severe hypoleptinemia nor hypoinsulinemia during suckling permanently impaired brown adipogenesis in white fat. In addition, energy balance studies of DIO mice exposed to cold indicates that mice with reduced adipose stores preferentially increased food intake, whereas those with larger adipose tissue depots preferred to utilize energy from their adipose stores.  相似文献   

8.
Transgenic animals that over- or underexpress a protein of interest have been used to study obesity development, prevention, and susceptibility to diet-induced obesity such as a high-fat diet. Several transgenic models are resistant to diet-induced obesity including those that overexpress the insulin-sensitive glucose transporter, GLUT4, in adipose tissue only. In this animal there is increased adipose tissue mass but the animal maintains its insulin sensitivity. The overexpression of lipoprotein lipase (LPL) in skeletal muscle and the elimination of a protein kinase A subunit both resulted in lean and obesity resistant animals. By directing the production of the diphtheria toxin A chain to adipose tissue only the resulting animals not only had less adipose tissue mass but were resistant to MSG-induced obesity. Conversely, transgenic models with decreased brown adipose tissue or its function have all resulted in obese animals, highlighting the importance of thermoregulation in body weight maintenance. The use of transgenic technology in the field of obesity has emphasized the regional differences among fat pads as well as the dissimilarity between genders in fuel metabolism. Several transgenic models have separated obesity from insulin resistance allowing the importance of each state to be studied individually. Results using transgenic animals have re-emphasized that obesity is a polygenic disease.  相似文献   

9.
The vgf gene regulates energy homeostasis and the VGF-derived peptide TLQP-21 centrally exerts catabolic effects in mice and hamsters. Here, we investigate the effect of chronic intracerebroventricular (icv) injection of TLQP-21 in mice fed high fat diet (HFD). Fast weight-gaining mice injected with the peptide or cerebrospinal fluid were selected for physiological, endocrine, and molecular analysis. TLQP-21 selectively inhibited the increase in body weight and epididymal white adipose tissue (eWAT) weight induced by HFD in control animals despite both groups having a similar degree of hyperphagia. TLQP-21 normalized the increase in leptin and decrease in ghrelin while increasing epinephrine and epinephrine/norepinephrine ratio when compared to values in controls. Finally, HFD-TLQP-21 mice showed a selective increase of eWAT β3-adrenergic receptor mRNA. Peroxisome-proliferator-activated-receptor-δ and hormone-sensing-lipase mRNA were also upregulated. In conclusion, chronic icv infusion of TLQP-21 prevented the early phase of diet-induced obesity despite overfeeding. These effects were paralleled by activation of catabolic pathways within the eWAT. Our results further support a role for TLQP-21 as a catabolic neuropeptide.  相似文献   

10.
11.

Background

Middle age obesity is recognized as a risk factor for Alzheimer''s disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions.

Methodology/Principal Findings

To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes.

Conclusions/Significance

Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-α and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokine secretion with no obvious effects on adipocyte culture phenotype. These data support the hypothesis that high fat diet-dependent obesity results in concomitant pro-inflammatory changes in brain and adipose tissue that is characterized, in part, by increased levels of APP that may be contributing specifically to inflammatory changes that occur.  相似文献   

12.
13.
目的:探讨高脂饮食致肥胖小鼠脂肪组织RIP140mRNA表达水平的变化及其与胰岛素抵抗的关系。方法:将C57BL/6J雄性小鼠随机分为正常饮食(NFD)组、高脂饮食(HFD)纽分别喂养14周后,测量两组小鼠体重,以NFD组小鼠体重作为对照,选取HFD组中体重大于对照组小鼠平均体重20%的小鼠作为肥胖组小鼠。对照组和肥胖组小鼠取血测甘油三酯(TG)、总胆固醇(TC)、空腹血糖(FBG)、空腹胰岛素水平(FIns),计算稳态模型胰岛素抵抗指数(HOMA-IR);采用RT—PCR技术检测两组小鼠附睾脂肪组织RIP140 mRNA的表达水平,并进行统计学分析。结果:HDF组小鼠中有12只符合标准计入肥胖组。肥胖组小鼠TG、TC、FBG、Fins(P〈0.05),HOMA-1R(P〈0.01)均明显高于对照组;肥胖组小鼠脂肪组织RIP140mRNA的表达高于对照组,差异具有统计学意义(P〈0.05);相关分析显示小鼠脂肪组织R1P140 mRNA表达水平与TG水平呈正相关(r=0.536,P〈0.05),与胰岛素抵抗指数呈正相关(r=0.465,P〈0.05),而与TC、FBG、Fins水平相关分析无统计学意义(P〉0.05)。结论:高脂饮食诱导的肥胖小鼠脂肪组织RIP140 mRNA表达增加,并与胰岛素抵抗程度呈正相关。  相似文献   

14.
人群调查发现肥胖人群网膜素水平较正常人群低,而正常及肥胖大鼠血清网膜素水平及其基因表达情况尚不清楚.将SD大鼠随机分为正常组(n=10)和高脂组(n=30),分别喂养普通饲料和高脂饲料.6 w后从高脂组选取体重增长最快的20只,再从中随机抽取10只继续喂养高脂饲料,12 w后两组各剩9只,采用全自动生化仪ADVIA2400测定血糖及血脂、ELISA检测血清胰岛素及网膜素水平、RT-PCR检测网膜脂肪组织网膜素mRNA表达水平.结果显示高脂组大鼠体重、体重增加值、肥胖指数、低密度脂蛋白、胰岛素、血清网膜素水平及网膜脂肪组织网膜素mRNA表达水平均高于正常组(P<0.05).首次发现肥胖大鼠血清网膜素水平及网膜脂肪组织中网膜素mRNA表达水平较正常大鼠显著增高,与人群调查结果不一致.  相似文献   

15.
Brown adipose tissue is a thermogenic organ that dissipates stored energy as heat to maintain body temperature. This process may also provide protection from development of diet-induced obesity. We report that the bioactive lipid mediator lysophosphatidic acid (LPA) markedly decreases differentiation of cultured primary brown adipocyte precursors, whereas potent selective inhibitors of the LPA-generating enzyme autotaxin (ATX) promote differentiation. Transgenic mice overexpressing ATX exhibit reduced expression of brown adipose tissue-related genes in peripheral white adipose tissue and accumulate significantly more fat than wild-type controls when fed a high-fat diet. Our results indicate that ATX and its product LPA are physiologically relevant negative regulators of brown fat adipogenesis and are consistent with a model in which a decrease in mature peripheral brown adipose tissue results in increased susceptibility to diet-induced obesity in mice.  相似文献   

16.
Excessive body fat accumulation can result in obesity, which is a serious health concern. Kefir, a probiotic, has recently shown possible health benefits in fighting obesity. This study investigated the inhibitory effects of 0.1 and 0.2% kefir powder on fat accumulation in adipose and liver tissues of high-fat diet (HFD)-induced obese mice. Kefir reduced body weight and epididymal fat pad weight and decreased adipocyte diameters in HFD-induced obese mice. This was supported by decreased expression of genes related to adipogenesis and lipogenesis as well as reduced proinflammatory marker levels in epididymal fat. Along with reduced hepatic triacylglycerol concentrations and serum alanine transaminase and aspartate transaminase activities, genes related to lipogenesis and fatty acid oxidation were downregulated and upregulated, respectively, in liver tissue. Kefir also decreased serum triacylglycerol, total cholesterol, and low-density lipoprotein–cholesterol concentrations. Overall, kefir has the potential to prevent obesity.  相似文献   

17.
Ghrelin is a hormone synthesized by the stomach that acts in different tissues via a specific receptor (GHS-R1a), including hypothalamus and adipose tissue. For instance, recent reports have shown that ghrelin has a direct action on hypothalamic regulation of food intake mainly inducing an orexigenic effect. On the other hand, ghrelin also modulates energy stores and expenditure in the adipocytes. This dual action has suggested that this hormone may act as a link between the central nervous system and peripheral mechanisms. Furthermore, concerning nutritional disorders, it has been suggested that obesity may be considered an impairment of the above cited link. Therefore, considering that neonatal overfeeding induces obesity in adulthood by unknown mechanisms, in this study we examined the effects of early life overnutrition on the development of obesity and in particular on adipose tissue ghrelin signaling in young mice. Our data demonstrated that overnutrition during early life induces a significant increase in body weight of young mice, starting at 10 days, and this increase in weight persisted until adulthood (90 days of age). In these animals, blood glucose, liver weight and visceral fat weight were found higher at 21 days when compared to the control group. Acylated ghrelin circulating levels were found lower in the young obese pups. In addition, in white adipose tissue ghrelin receptor (GHS-R1a) expression increased and was associated to positive modulation of content and phosphorylation of proteins involved in cell energy store and use as AKT, PI3K, AMPK, GLUT-4, and CPT1. However, PPARγ content decreased in obese group. Basically, we showed that adipose tissue metabolism is altered in early life acquired obesity and probably due to such modification a new pattern of ghrelin signaling pathway takes place.  相似文献   

18.
Obesity is accompanied by adipocyte death and accumulation of macrophages and mast cells in expanding adipose tissues. Considering the differences in biological behavior of fat found in different anatomical locations, we explored the distribution of mast cells, solitary macrophages, and crown-like structures (CLS), the surrogates for dead adipocytes, in subcutaneous and abdominal visceral fat of lean and diet-induced obese C57BL/6 mice. In fat depots of lean mice, mast cells were far less prevalent than solitary macrophages. Subcutaneous fat contained more mast cells, but fewer solitary macrophages and CLS, than visceral fat. Whereas no significant change in mast cell density of subcutaneous fat was observed, obesity was accompanied by a substantial increase in mast cells in visceral fat. CLS became prevalent in visceral fat of obese mice, and the distribution paralleled mast cells. Adipose tissue mast cells contained and released preformed TNF-α, the cytokine implicated in the pathogenesis of obesity-linked insulin resistance. In summary, subcutaneous fat differed from visceral fat by immune cell composition and a lower prevalence of CLS both in lean and obese mice. The increase in mast cells in visceral fat of obese mice suggests their role in the pathogenesis of obesity and insulin resistance.  相似文献   

19.
Adipose tissue plays an active role in the development of obesity, and thus characterization of the molecular changes related to obesity in this tissue is a priority. Recently, we identified tungstate as a potent body weight reducing agent in obese animals, adipose tissue being one of the targets of its action. In this study a proteomics approach combining 2-DE and MS was used to identify proteins associated with obesity and targets of tungstate in white adipose tissue. Twenty-nine proteins were found differentially expressed between lean and diet-induced obese rats. Expression changes in transferrin, vimentin, vinculin, peroxiredoxins, Rho-GTP dissociation inhibitor, grifin, guanine deaminase and 3-phosphoglycerate dehydrogenase were associated here for the first time with obesity. Furthermore, tungstate treatment of obese rats reverted expression changes of 70% of the proteins modulated by obesity and another ten proteins were regulated by tungstate independently of the body weight reduction. The results suggest that the tungstate antiobesity effect can be mediated by the modulation of cellular structure, metabolism, redox state and signalling processes in adipose tissue. These findings open new avenues for the study of the aetiology of obesity and its treatment.  相似文献   

20.
Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or beverages to counteract the accumulation of body fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号