首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ziheng Xu 《Autophagy》2016,12(10):1685-1686
In eukaryotic cells, cell migration is a dynamic and complex process that involves finely tuned orchestration of a multitude of proteins including, for example, those involved in focal adhesions (FAs). Cell migration plays an indispensable role in particular stages of development and its proper regulation is crucial in various biological processes, from wound healing to the immune response. FAs are transmembrane protein complexes that traverse cytoskeletal infrastructures all the way to the extracellular matrix, producing traction at the leading edge of the cell, thus allowing for motility. The assembly of FAs has been extensively studied, whereas disassembly remains poorly understood. Here, we highlight 2 recent studies (see the corresponding puncta in the previous and current issues of the journal) that demonstrate a requirement for macroautophagy/autophagy in FA disassembly. These studies also provide a deeper understanding of how autophagy can contribute to cell migration among multiple cell types.  相似文献   

2.
The ability of cancer cells to move and invade the surrounding environment is the basis of local and distant metastasis. Cancer cell movement requires dynamic remodeling of the cytoskeleton and cell membrane and is controlled by multiprotein complexes including focal adhesion kinase (FAK) or the Neural Wiskott-Aldrich Syndrome Protein (N-WASP). We show that 17β-estradiol induces phosphorylation of FAK and its translocation toward membrane sites where focal adhesion complexes are assembled. This process is triggered via a Gα/Gβ protein-dependent, rapid extranuclear signaling of estrogen receptor α interacts in a multiprotein complex with c-Src, phosphatidylinositol 3-OH kinase, and FAK. Within this complex FAK autophosphorylation ensues, and activated FAK recruits the small GTPase cdc42, which, in turn, triggers N-WASP phosphorylation. This results in the translocation of Arp2/3 complexes at sites where membrane structures related to cell movement are formed. Recruitment of FAK and N-WASP is necessary for cell migration and invasion induced by 17β-estradiol in breast cancer cells. Our findings identify an original mechanism through which estrogen promotes breast cancer cell motility and invasion. This information helps to understand the effects of estrogen on breast cancer metastasis and may provide new targets for therapeutic interventions.  相似文献   

3.
Transient elevations in Ca2+ have previously been shown to promote focal adhesion disassembly and cell motility through an unknown mechanism. In this study, evidence is provided to show that CaMK-II, a Ca2+/calmodulin dependent protein kinase, influences fibroblast adhesion and motility. TIRF microscopy reveals a dynamic population of CaMK-II at the cell surface in migrating cells. Inhibition of CaMK-II with two mechanistically distinct, membrane permeant inhibitors (KN-93 and myr-AIP) freezes lamellipodial dynamics, accelerates spreading on fibronectin, enlarges paxillin-containing focal adhesions and blocks cell motility. In contrast, constitutively active CaMK-II is not found at the cell surface, reduces cell attachment, eliminates paxillin from focal adhesions and decreases the phospho-tyrosine levels of both FAK and paxillin; all of these events can be reversed with myr-AIP. Thus, both CaMK-II inhibition and constitutive activation block cell motility through over-stabilization or destabilization of focal adhesions, respectively. Coupled with the existence of transient Ca2+ elevations and a dynamic CaMK-II population, these findings provide the first direct evidence that CaMK-II enables cell motility by transiently and locally stimulating tyrosine dephosphorylation of focal adhesion proteins to promote focal adhesion turnover.  相似文献   

4.
Src kinase is a crucial mediator of adhesion-related signaling and motility. Src binds to focal adhesion kinase (FAK) through its SH2 domain and subsequently activates it for phosphorylation of downstream substrates. In addition to this binding function, data suggested that the SH2 domain might also perform an important role in targeting Src to focal adhesions (FAs) to enable further substrate phosphorylations. To examine this, we engineered an R175L mutation in cSrc to prevent the interaction with FAK pY397. This constitutively open Src kinase mediated up-regulated substrate phosphorylation in SYF cells but was unable to promote malignant transformation. Significantly, SrcR175L cells also had a profound motility defect and an impaired FA generation capacity. Importantly, we were able to recapitulate wild-type motile behavior and FA formation by directing the kinase to FAs, clearly implicating the SH2 domain in recruitment to FAK and indicating that this targeting capacity, and not simply Src-FAK scaffolding, was critical for normal Src function.  相似文献   

5.
Focal adhesions (FAs) play a key role in cell attachment, and their timely disassembly is required for cell motility. Both microtubule-dependent targeting and recruitment of clathrin are critical for FA disassembly. Here we identify nonvisual arrestins as molecular links between microtubules and clathrin. Cells lacking both nonvisual arrestins showed excessive spreading on fibronectin and poly-d-lysine, increased adhesion, and reduced motility. The absence of arrestins greatly increases the size and lifespan of FAs, indicating that arrestins are necessary for rapid FA turnover. In nocodazole washout assays, FAs in arrestin-deficient cells were unresponsive to disassociation or regrowth of microtubules, suggesting that arrestins are necessary for microtubule targeting–dependent FA disassembly. Clathrin exhibited decreased dynamics near FA in arrestin-deficient cells. In contrast to wild-type arrestins, mutants deficient in clathrin binding did not rescue the phenotype. Collectively the data indicate that arrestins are key regulators of FA disassembly linking microtubules and clathrin.  相似文献   

6.
Epigenetic silencing by DNA methylation in brain tumors has been reported for many genes, however, their function on pathogenesis needs to be evaluated. We investigated the MTSS1 gene, identified as hypermethylated by differential methylation hybridization (DMH). Fifty-nine glioma tissue samples and seven glioma cell lines were examined for hypermethylation of the MTSS1 promotor, MTSS1 expression levels and gene dosage. GBM cell lines were treated with demethylating agents and interrogated for functional consequences of MTSS1 expression after transient transfection. Hypermethylation was significantly associated with IDH1/2 mutation. Comparative SNP analysis indicates higher incidence of loss of heterozygosity of MTSS1 in anaplastic astrocytomas and secondary glioblastomas as well as hypermethylation of the remaining allele. Reversal of promoter hypermethylation results in an increased MTSS1 expression. Cell motility was significantly inhibited by MTSS1 overexpression without influencing cell growth or apoptosis. Immunofluorescence analysis of MTSS1 in human astrocytes indicates co-localization with actin filaments. MTSS1 is down-regulated by DNA methylation in glioblastoma cell lines and is part of the G-CIMP phenotype in primary glioma tissues. Our data on normal astrocytes suggest a function of MTSS1 at focal contact structures with an impact on migratory capacity but no influence on apoptosis or cellular proliferation.  相似文献   

7.
Glioma is a common brain malignancy for which new drug development is urgently needed because of radiotherapy and drug resistance. Recent studies have demonstrated that artemisinin (ARS) compounds can display antiglioma activity, but the mechanisms are poorly understood. Using cell lines and mouse models, we investigated the effects of the most soluble ARS analogue artesunate (ART) on glioma cell growth, migration, distant seeding and senescence and elucidated the underlying mechanisms. Artemisinin effectively inhibited glioma cell growth, migration and distant seeding. Further investigation of the mechanisms showed that ART can influence glioma cell metabolism by affecting the nuclear localization of SREBP2 (sterol regulatory element‐binding protein 2) and the expression of its target gene HMGCR (3‐hydroxy‐3‐methylglutaryl coenzyme A reductase), the rate‐limiting enzyme of the mevalonate (MVA) pathway. Moreover, ART affected the interaction between SREBP2 and P53 and restored the expression of P21 in cells expressing wild‐type P53, thus playing a key role in cell senescence induction. In conclusion, our study demonstrated the new therapeutic potential of ART in glioma cells and showed the novel anticancer mechanisms of ARS compounds of regulating MVA metabolism and cell senescence.  相似文献   

8.
Nck-2 is a ubiquitously expressed adaptor protein comprising primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We report here that Nck-2 interacts with focal adhesion kinase (FAK), a cytoplasmic protein tyrosine kinase critically involved in the cellular control of motility. Using a mutational strategy, we have found that the formation of the Nck-2-FAK complex is mediated by interactions involving multiple SH2 and SH3 domains of Nck-2. The Nck-2 SH2 domain-mediated interaction with FAK is dependent on phosphorylation of Tyr397, a site that is involved in the regulation of cell motility. A fraction of Nck-2 co-localizes with FAK at cell periphery in spreading cells. Furthermore, overexpression of Nck-2 modestly decreased cell motility, whereas overexpression of a mutant form of Nck-2 containing the SH2 domain but lacking the SH3 domains significantly promoted cell motility. These results identify a novel interaction between Nck-2 and FAK and suggest a role of Nck-2 in the modulation of cell motility.  相似文献   

9.
10.
The fibronectin binding integrins alpha5beta1 and alpha4beta1 generate signals pivotal for cell migration through distinct yet undefined mechanisms. For alpha5beta1, beta1-mediated activation of focal adhesion kinase (FAK) promotes c-Src recruitment to FAK and the formation of a FAK-Src signaling complex. Herein, we show that FAK expression is essential for alpha5beta1-stimulated cell motility and that exogenous expression of human alpha4 in FAK-null fibroblasts forms a functional alpha4beta1 receptor that promotes robust cell motility equal to the alpha5beta1 stimulation of wild-type and FAK-reconstituted fibroblasts. alpha4beta1-stimulated FAK-null cell spreading and motility were dependent on the integrity of the alpha4 cytoplasmic domain, independent of direct paxillin binding to alpha4, and were not affected by PRNK expression, a dominant-negative inhibitor of Pyk2. alpha4 cytoplasmic domain-initiated signaling led to a approximately 4-fold activation of c-Src which did not require paxillin binding to alpha4. Notably, alpha4-stimulated cell motility was inhibited by catalytically inactive receptor protein-tyrosine phosphatase alpha overexpression and blocked by the p50Csk phosphorylation of c-Src at Tyr-529. alpha4beta1-stimulated cell motility of triple-null Src(-/-), c-Yes(-/-), and Fyn(-/-) fibroblasts was dependent on c-Src reexpression that resulted in p130Cas tyrosine phosphorylation and Rac GTPase loading. As p130Cas phosphorylation and Rac activation are common downstream targets for alpha5beta1-stimulated FAK activation, our results support the existence of a novel alpha4 cytoplasmic domain connection leading to c-Src activation which functions as a FAK-independent linkage to a common motility-promoting signaling pathway.  相似文献   

11.
One of the earliest events during chondrogenesis is the formation of condensations, a necessary pre‐requisite for subsequent differentiation of a chondrogenic phenotype. Members of the Fibronectin Lecucine Rich Transmembrane (FLRT) proteins have been shown to be involved in cell sorting and neurite outgrowth. Additionally, FLRT2 is highly expressed at putative sites of chondrogenic differentiation during craniofacial development. In this study, we demonstrate that FLRT2 plays a role in mediating cell proliferation and cell–cell interactions during early chondrogenesis. Clones of stable transfectants of a murine chondroprogenitor cell line, ATDC5, were established in which FLRT2 was knocked down or overexpressed. Cells in which FLRT2 was knocked down proliferated at a slower rate compared to control wild‐type ATDC5 cells or those containing a non‐coding shRNA. In addition, FLRT2 knockdown cells formed numerous lectin peanut agglutinin (PNA) stained aggregates and exhibited higher expression of the cell adhesion molecule, N‐cadherin. In an in vitro wound healing assay, fewer FLRT2 knockdown cells appeared to migrate into the defect. Surprisingly, the FLRT2 knockdown cells demonstrated increased formation of Alcian blue‐stainable extracellular matrix, suggesting that their reduced aggregate formation did not inhibit subsequent chondrogenic differentiation. The opposite trends were observed in ATDC5 clones that overexpressed FLRT2. Specifically, FLRT overexpressing cells proliferated faster, formed fewer PNA‐positive aggregates, accumulated increased Alcian blue‐positive matrix, and migrated faster to close a wound. Collectively, our findings provide evidence for a role of FLRT2 in enhancing cell proliferation and reducing intercellular adhesion during the early stages of chondrogenesis. J. Cell. Biochem. 112: 3440–3448, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
The fibronectin (FN)-binding integrins alpha4beta1 and alpha5beta1 confer different cell adhesive properties, particularly with respect to focal adhesion formation and migration. After analyses of alpha4+/alpha5+ A375-SM melanoma cell adhesion to fragments of FN that interact selectively with alpha4beta1 and alpha5beta1, we now report two differences in the signals transduced by each receptor that underpin their specific adhesive properties. First, alpha5beta1 and alpha4beta1 have a differential requirement for cell surface proteoglycan engagement for focal adhesion formation and migration; alpha5beta1 requires a proteoglycan coreceptor (syndecan-4), and alpha4beta1 does not. Second, adhesion via alpha5beta1 caused an eightfold increase in protein kinase Calpha (PKCalpha) activation, but only basal PKCalpha activity was observed after adhesion via alpha4beta1. Pharmacological inhibition of PKCalpha and transient expression of dominant-negative PKCalpha, but not dominant-negative PKCdelta or PKCzeta constructs, suppressed focal adhesion formation and cell migration mediated by alpha5beta1, but had no effect on alpha4beta1. These findings demonstrate that different integrins can signal to induce focal adhesion formation and migration by different mechanisms, and they identify PKCalpha signaling as central to the functional differences between alpha4beta1 and alpha5beta1.  相似文献   

13.
《Biophysical journal》2022,121(6):1070-1080
By analyzing the distributions of focal adhesion (FA) lifetimes from different cell types, we found that a gamma distribution best matched the experimental distributions. In all but one case, it was a unimodal, non-symmetric gamma distribution. We used a mathematical model of cell motion to help understand the mechanics and data behind the FA lifetime distributions. The model uses a detach-rate function to determine how long an FA will persist before it detaches. The detach-rate function that produced distributions with a best-fit gamma curve that closely matched that of the data was both force and time dependent. Using the data gathered from the matching simulations, we calculated both the cell speed and mean FA lifetime and compared them. Where available, we also compared this relationship to that of the experimental data and found that the simulation reasonably matches it in most cases. In both the simulations and experimental data, the cell speed and mean FA lifetime are related, with longer mean lifetimes being indicative of slower speeds. We suspect that one of the main predictors of cell speed for migrating cells is the distribution of the FA lifetimes.  相似文献   

14.
15.
The adult neural parenchyma contains a distinctive extracellular matrix that acts as a barrier to cell and neurite motility. Nonneural tumors that metastasize to the central nervous system almost never infiltrate it and instead displace the neural tissue as they grow. In contrast, invasive gliomas disrupt the extracellular matrix and disperse within the neural tissue. A major inhibitory component of the neural matrix is the lectican family of chondroitin sulfate proteoglycans, of which brevican is the most abundant member in the adult brain. Interestingly, brevican is also highly up-regulated in gliomas and promotes glioma dispersion by unknown mechanisms. Here we show that brevican secreted by glioma cells enhances cell adhesion and motility only after proteolytic cleavage. At the molecular level, brevican promotes epidermal growth factor receptor activation, increases the expression of cell adhesion molecules, and promotes the secretion of fibronectin and accumulation of fibronectin microfibrils on the cell surface. Moreover, the N-terminal cleavage product of brevican, but not the full-length protein, associates with fibronectin in cultured cells and in surgical samples of glioma. Taken together, our results provide the first evidence of the cellular and molecular mechanisms that may underlie the motility-promoting role of brevican in primary brain tumors. In addition, these results underscore the important functional implications of brevican processing in glioma progression.  相似文献   

16.
17.
Integrins play a major role in the regulation of cell motility. They physically link the extracellular environment to the cytoskeleton and participate in large protein complexes known as focal adhesions. In this report, it is demonstrated that treatment of tumor cells with the homodimeric disintegrin contortrostatin induces integrin-mediated tyrosine phosphorylation events and causes severe disruptions in the actin cytoskeleton and disassembly of focal adhesion structures without affecting cellular adhesion to a reconstituted basement membrane. Included in this disruption is the tyrosine phosphorylation and altered subcellular localization of FAK. Through use of transfected 293 cells with specific integrin expression profiles and anti-alphavbeta3 mAbs, we demonstrate that these events are mediated exclusively by the alphavbeta3 integrin and are likely the result of contortrostatin-mediated crosslinking of this receptor at the cell surface, since monovalent disintegrins, flavoridin or echistatin do not induce such effects. Further, it is shown that contortrostatin potently inhibits motility in cells expressing the alphavbeta33 integrin. The results of this study describe a novel integrin-mediated mechanism by which cell motility can be inhibited and suggest an alternative approach to therapeutic intervention for cancer invasion and metastasis.  相似文献   

18.
R-Ras regulates integrin function, but its effects on integrin signaling pathways have not been well described. We demonstrate that activation of R-Ras promoted focal adhesion formation and altered localization of the alpha2beta1 integrin from cell-cell to cell-matrix adhesions in breast epithelial cells. Constitutively activated R-Ras(38V) dramatically enhanced focal adhesion kinase (FAK) and p130(Cas) phosphorylation upon collagen stimulation or clustering of the alpha2beta1 integrin, even in the absence of increased ligand binding. Signaling events downstream of R-Ras differed from integrins and K-Ras, since pharmacological inhibition of Src or disruption of actin inhibited integrin-mediated FAK and p130(Cas) phosphorylation, focal adhesion formation, and migration in control and K-Ras(12V)-expressing cells but had minimal effect in cells expressing R-Ras(38V). Therefore, signaling from R-Ras to FAK and p130(Cas) has a component that is Src independent and not through classic integrin signaling pathways and a component that is Src dependent. R-Ras effector domain mutants and pharmacological inhibition suggest a partial role for phosphatidylinositol 3-kinase (PI3K), but not Raf, in R-Ras signaling to FAK and p130(Cas). However, PI3K cannot account for the Src-independent pathway, since simultaneous inhibition of both PI3K and Src did not completely block effects of R-Ras on FAK phosphorylation. Our results suggest that R-Ras promotes focal adhesion formation by signaling to FAK and p130(Cas) through a novel mechanism that differs from but synergizes with the alpha2beta1 integrin.  相似文献   

19.
It has been proposed that the focal adhesion kinase (FAK) mediates focal adhesion formation through tyrosine phosphorylation during cell adhesion. We investigated the role of FAK in focal adhesion structure and function. Loading cells with a glutathione-S-transferase fusion protein (GST-Cterm) containing the FAK focal adhesion targeting sequence, but not the kinase domain, decreased the association of endogenous FAK with focal adhesions. This displacement of endogenous FAK in both BALB/c 3T3 cells and human umbilical vein endothelial cells loaded with GST-Cterm decreased focal adhesion phosphotyrosine content. Neither cell type, however, exhibited a reduction in focal adhesions after GST-Cterm loading. These results indicate that FAK mediates adhesion-associated tyrosine phosphorylation, but not the formation of focal adhesions. We then examined the effect of inhibiting FAK function on other adhesion-dependent cell behavior. Cells microinjected with GST-Cterm exhibited decreased migration. In addition, cells injected with GST-Cterm had decreased DNA synthesis compared with control-injected or noninjected cells. These findings suggest that FAK functions in the regulation of cell migration and cell proliferation.  相似文献   

20.
The asymmetric distribution of microtubule (MT) dynamics in migrating cells is important for cell polarization, yet the underlying regulatory mechanisms remain underexplored. Here, we addressed this question by studying the role of the MT depolymerase, MCAK (mitotic centromere-associated kinesin), in the highly persistent migration of RPE-1 cells. MCAK knockdown leads to slowed migration and poor directional movement. Fixed and live cell imaging revealed that MCAK knockdown results in excessive membrane ruffling as well as defects in cell polarization and the maintenance of a major protrusive front. Additionally, loss of MCAK increases the lifetime of focal adhesions by decreasing their disassembly rate. These functions correlate with a spatial distribution of MCAK activity, wherein activity is higher in the trailing edge of cells compared with the leading edge. Overexpression of Rac1 has a dominant effect over MCAK activity, placing it downstream of or in a parallel pathway to MCAK function in migration. Together, our data support a model in which the polarized distribution of MCAK activity and subsequent differential regulation of MT dynamics contribute to cell polarity, centrosome positioning, and focal adhesion dynamics, which all help facilitate robust directional migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号