首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report engineering Neurospora crassa to improve the yield of cellobiose and cellobionate from cellulose. A previously engineered strain of N. crassa (F5) with six of seven β-glucosidase (bgl) genes knocked out was shown to produce cellobiose and cellobionate directly from cellulose without the addition of exogenous cellulases. In this study, the F5 strain was further modified to improve the yield of cellobiose and cellobionate from cellulose by increasing cellulase production and decreasing product consumption. The effects of two catabolite repression genes, cre-1 and ace-1, on cellulase production were investigated. The F5 Δace-1 mutant showed no improvement over the wild type. The F5 Δcre-1 and F5 Δace-1 Δcre-1 strains showed improved cellobiose dehydrogenase and exoglucanase expression. However, this improvement in cellulase expression did not lead to an improvement in cellobiose or cellobionate production. The cellobionate phosphorylase gene (ndvB) was deleted from the genome of F5 Δace-1 Δcre-1 to prevent the consumption of cellobiose and cellobionate. Despite a slightly reduced hydrolysis rate, the F5 Δace-1 Δcre-1 ΔndvB strain converted 75% of the cellulose consumed to the desired products, cellobiose and cellobionate, compared to 18% converted by the strain F5 Δace-1 Δcre-1.  相似文献   

3.

Background

Pathogenic bacteria maintain a multifaceted apparatus to resist damage caused by external stimuli. As part of this, the universal stress protein A (UspA) and its homologues, initially discovered in Escherichia coli K-12 were shown to possess an important role in stress resistance and growth in several bacterial species.

Methods and Findings

We conducted a study to assess the role of three homologous proteins containing the UspA domain in the facultative intracellular human pathogen Listeria monocytogenes under different stress conditions. The growth properties of three UspA deletion mutants (Δlmo0515, Δlmo1580 and Δlmo2673) were examined either following challenge with a sublethal concentration of hydrogen peroxide or under acidic conditions. We also examined their ability for intracellular survival within murine macrophages. Virulence and growth of usp mutants were further characterized in invertebrate and vertebrate infection models.Tolerance to acidic stress was clearly reduced in Δlmo1580 and Δlmo0515, while oxidative stress dramatically diminished growth in all mutants. Survival within macrophages was significantly decreased in Δlmo1580 and Δlmo2673 as compared to the wild-type strain. Viability of infected Galleria mellonella larvae was markedly higher when injected with Δlmo1580 or Δlmo2673 as compared to wild-type strain inoculation, indicating impaired virulence of bacteria lacking these usp genes. Finally, we observed severely restricted growth of all chromosomal deletion mutants in mice livers and spleens as compared to the load of wild-type bacteria following infection.

Conclusion

This work provides distinct evidence that universal stress proteins are strongly involved in listerial stress response and survival under both in vitro and in vivo growth conditions.  相似文献   

4.
5.
Neurospora crassa colonizes burnt grasslands and metabolizes both cellulose and hemicellulose from plant cell walls. When switched from a favored carbon source to cellulose, N. crassa dramatically up-regulates expression and secretion of genes encoding lignocellulolytic enzymes. However, the means by which N. crassa and other filamentous fungi sense the presence of cellulose in the environment remains unclear. Previously, we have shown that a N. crassa mutant carrying deletions of three β-glucosidase enzymes (Δ3βG) lacks β-glucosidase activity, but efficiently induces cellulase gene expression and cellulolytic activity in the presence of cellobiose as the sole carbon source. These observations indicate that cellobiose, or a modified version of cellobiose, functions as an inducer of lignocellulolytic gene expression and activity in N. crassa. Here, we show that in N. crassa, two cellodextrin transporters, CDT-1 and CDT-2, contribute to cellulose sensing. A N. crassa mutant carrying deletions for both transporters is unable to induce cellulase gene expression in response to crystalline cellulose. Furthermore, a mutant lacking genes encoding both the β-glucosidase enzymes and cellodextrin transporters (Δ3βGΔ2T) does not induce cellulase gene expression in response to cellobiose. Point mutations that severely reduce cellobiose transport by either CDT-1 or CDT-2 when expressed individually do not greatly impact cellobiose induction of cellulase gene expression. These data suggest that the N. crassa cellodextrin transporters act as “transceptors” with dual functions - cellodextrin transport and receptor signaling that results in downstream activation of cellulolytic gene expression. Similar mechanisms of transceptor activity likely occur in related ascomycetes used for industrial cellulase production.  相似文献   

6.
7.

Background

Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of the lethal disease tularemia. An outer membrane protein (FTT0918) of F. tularensis subsp. tularensis has been identified as a virulence factor. We generated a F. novicida (F. tularensis subsp. novicida) FTN_0444 (homolog of FTT0918) fopC mutant to study the virulence-associated mechanism(s) of FTT0918.

Methods and Findings

The ΔfopC strain phenotype was characterized using immunological and biochemical assays. Attenuated virulence via the pulmonary route in wildtype C57BL/6 and BALB/c mice, as well as in knockout (KO) mice, including MHC I, MHC II, and µmT (B cell deficient), but not in IFN-γ or IFN-γR KO mice was observed. Primary bone marrow derived macrophages (BMDM) prepared from C57BL/6 mice treated with rIFN-γ exhibited greater inhibition of intracellular ΔfopC than wildtype U112 strain replication; whereas, IFN-γR KO macrophages showed no IFN-γ-dependent inhibition of ΔfopC replication. Moreover, phosphorylation of STAT1 was downregulated by the wildtype strain, but not the fopC mutant, in rIFN-γ treated macrophages. Addition of NG-monomethyl-L-arginine, an NOS inhibitor, led to an increase of ΔfopC replication to that seen in the BMDM unstimulated with rIFN-γ. Enzymatic screening of ΔfopC revealed aberrant acid phosphatase activity and localization. Furthermore, a greater abundance of different proteins in the culture supernatants of ΔfopC than that in the wildtype U112 strain was observed.

Conclusions

F. novicida FopC protein facilitates evasion of IFN-γ-mediated immune defense(s) by down-regulation of STAT1 phosphorylation and nitric oxide production, thereby promoting virulence. Additionally, the FopC protein also may play a role in maintaining outer membrane stability (integrity) facilitating the activity and localization of acid phosphatases and other F. novicida cell components.  相似文献   

8.
9.
Xiao S  Manley NR 《PloS one》2010,5(11):e15396

Background

Foxn1Δ/Δ mutant mice have a specific defect in thymic development, characterized by a block in TEC differentiation at an intermediate progenitor stage, and blocks in thymocyte development at both the DN1 and DP cell stages, resulting in the production of abnormally functioning T cells that develop from an atypical progenitor population. In the current study, we tested the effects of these defects on thymic selection.

Methodology/Principal Findings

We used Foxn1Δ/Δ; DO11 Tg and Foxn1Δ/Δ; OT1 Tg mice as positive selection and Foxn1Δ/Δ; MHCII I-E mice as negative selection models. We also used an in vivo system of antigen-specific reactivity to test the function of peripheral T cells. Our data show that the capacity for positive and negative selection of both CD4 and CD8 SP thymocytes was reduced in Foxn1Δ/Δ mutants compared to Foxn1+/Δ control mice. These defects were associated with reduction of both MHC Class I and Class II expression, although the resulting peripheral T cells have a broad TCR Vβ repertoire. In this deficient thymic environment, immature CD4 and CD8 SP thymocytes emigrate from the thymus into the periphery. These T cells had an incompletely activated profile under stimulation of the TCR signal in vitro, and were either hypersensitive or hyporesponsive to antigen-specific stimulation in vivo. These cell-autonomous defects were compounded by the hypocellular peripheral environment caused by low thymic output.

Conclusions/Significance

These data show that a primary defect in the thymic microenvironment can cause both direct defects in selection which can in turn cause indirect effects on the periphery, exacerbating functional defects in T cells.  相似文献   

10.
11.

Background

Klebsiella pneumoniae is a Gram-negative, non-motile, facultative anaerobe belonging to the Enterobacteriaceae family of the γ-Proteobacteria class in the phylum Proteobacteria. Multidrug resistant K. pneumoniae have caused major therapeutic problems worldwide due to emergence of extended-spectrum β-lactamase producing strains. Two-component systems serve as a basic stimulus-response coupling mechanism to allow organisms to sense and respond to changes in many different environmental conditions including antibiotic stress.

Principal Findings

In the present study, we investigated the role of an uncharacterized cpxAR operon in bacterial physiology and antimicrobial resistance by generating isogenic mutant (ΔcpxAR) deficient in the CpxA/CpxR component derived from the hyper mucoidal K1 strain K. pneumoniae NTUH-K2044. The behaviour of ΔcpxAR was determined under hostile conditions, reproducing stresses encountered in the gastrointestinal environment and deletion resulted in higher sensitivity to bile, osmotic and acid stresses. The ΔcpxAR was more susceptible to β-lactams and chloramphenicol than the wild-type strain, and complementation restored the altered phenotypes. The relative change in expression of acrB, acrD, eefB efflux genes were decreased in cpxAR mutant as evidenced by qRT-PCR. Comparison of outer membrane protein profiles indicated a conspicuous difference in the knock out background. Gel shift assays demonstrated direct binding of CpxRKP to promoter region of ompC KP in a concentration dependent manner.

Conclusions and Significance

The Cpx envelope stress response system is known to be activated by alterations in pH, membrane composition and misfolded proteins, and this systematic investigation reveals its direct involvement in conferring antimicrobial resistance against clinically significant antibiotics for the very first time. Overall results displayed in this report reflect the pleiotropic role of the CpxAR signaling system and diversity of the antibiotic resistome in hyper virulent K1 serotype K. pneumoniae NTUH-K2044.  相似文献   

12.
13.
14.
15.
16.

Background

In comparison to the comprehensive analyses performed on virulence gene expression, regulation and action, the intracellular metabolism of Salmonella during infection is a relatively under-studied area. We investigated the role of the tricarboxylic acid (TCA) cycle in the intracellular replication of Salmonella Typhimurium in resting and activated macrophages, epithelial cells, and during infection of mice.

Methodology/Principal Findings

We constructed deletion mutations of 5 TCA cycle genes in S. Typhimurium including gltA, mdh, sdhCDAB, sucAB, and sucCD. We found that the mutants exhibited increased net intracellular replication in resting and activated murine macrophages compared to the wild-type. In contrast, an epithelial cell infection model showed that the S. Typhimurium ΔsucCD and ΔgltA strains had reduced net intracellular replication compared to the wild-type. The glyoxylate shunt was not responsible for the net increased replication of the TCA cycle mutants within resting macrophages. We also confirmed that, in a murine infection model, the S. Typhimurium ΔsucAB and ΔsucCD strains are attenuated for virulence.

Conclusions/Significance

Our results suggest that disruption of the TCA cycle increases the ability of S. Typhimurium to survive within resting and activated murine macrophages. In contrast, epithelial cells are non-phagocytic cells and unlike macrophages cannot mount an oxidative and nitrosative defence response against pathogens; our results show that in HeLa cells the S. Typhimurium TCA cycle mutant strains show reduced or no change in intracellular levels compared to the wild-type [1]. The attenuation of the S. Typhimurium ΔsucAB and ΔsucCD mutants in mice, compared to their increased net intracellular replication in resting and activated macrophages suggest that Salmonella may encounter environments within the host where a complete TCA cycle is advantageous.  相似文献   

17.

Background

Genes coding for the fatty acid desaturases (FADS1, 2, 3) localized at the cancer genomic hotspot 11q13 locus are required for the biosynthesis of 20 carbon polyunsaturated fatty acids (PUFA) that are direct eicosanoid precursors. In several cancer cell lines, FADS2 encoded Δ6 and Δ8 desaturation is not functional.

Methodology/Principal Findings

Analyzing MCF7 cell fatty acids with detailed structural mass spectrometry, we show that in the absence of FADS2 activity, the FADS1 product Δ5-desaturase operates to produce 5,11,14–20∶3 and 5,11,14,17–20∶4. These PUFA are missing the 8–9 double bond of the eicosanoid signaling precursors arachidonic acid (5,8,11,14–20∶4) and eicosapentaenoic acid (5,8,11,14,17–20∶5). Heterologous expression of FADS2 restores Δ6 and Δ8-desaturase activity and normal eicosanoid precursor synthesis.

Conclusions/Significance

The loss of FADS2-encoded activities in cancer cells shuts down normal PUFA biosynthesis, deleting the endogenous supply of eicosanoid and downstream docosanoid precursors, and replacing them with unusual butylene-interrupted fatty acids. If recapitulated in vivo, the normal eicosanoid and docosanoid cell signaling milieu would be depleted and altered due to reduction and substitution of normal substrates with unusual substrates, with unpredictable consequences for cellular communication.  相似文献   

18.

Background

The ability to respond to anti-growth signals is critical to maintain tissue homeostasis and loss of this negative growth control safeguard is considered a hallmark of cancer. Negative growth regulation generally occurs during the G0/G1 phase of the cell cycle, yet the redundancy and complexity among components of this regulatory network has made it difficult to discern how negative growth cues protect cells from aberrant proliferation.

Methodology/Principal Findings

The retinoblastoma protein (pRB) acts as the final barrier to prevent cells from entering into the cell cycle. By introducing subtle changes in the endogenous mouse Rb1 gene (Rb1ΔL), we have previously shown that interactions at the LXCXE binding cleft are necessary for the proper response to anti-growth signals such as DNA damage and TGF-β, with minimal effects on overall development. This disrupts the balance of pro- and anti-growth signals in mammary epithelium of Rb1ΔL/ΔL mice. Here we show that Rb1ΔL/ΔL mice are more prone to mammary tumors in the Wap-p53R172H transgenic background indicating that negative growth regulation is important for tumor suppression in these mice. In contrast, the same defect in anti-growth control has no impact on Neu-induced mammary tumorigenesis.

Conclusions/Significance

Our work demonstrates that negative growth control by pRB acts as a crucial barrier against oncogenic transformation. Strikingly, our data also reveals that this tumor suppressive effect is context-dependent.  相似文献   

19.
Hung JH  Teng YN  Wang LH  Su IJ  Wang CC  Huang W  Lee KH  Lu KY  Wang LH 《PloS one》2011,6(12):e28977

Background

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. Our previous studies have indicated that expression of Hepatitis B virus pre-S2 large mutant surface antigen (HBV pre-S2Δ) is associated with a significant risk of developing HCC. However, the relationship between HBV pre-S2Δ protein and the resistance of chemotherapeutic drug treatment is still unclear.

Methodology/Principal Findings

Here, we show that the expression of HBV pre-S2Δ mutant surface protein in Huh-7 cell significantly promoted cell growth and colony formation. Furthermore, HBV pre-S2Δ protein increased both mRNA (2.7±0.5-fold vs. vehicle, p = 0.05) and protein (3.2±0.3-fold vs. vehicle, p = 0.01) levels of Bcl-2 in Huh-7 cells. HBV pre-S2Δ protein also enhances Bcl-2 family, Bcl-xL and Mcl-1, expression in Huh-7 cells. Meanwhile, induction of NF-κB p65, ERK, and Akt phosphorylation, and GRP78 expression, an unfolded protein response chaperone, were observed in HBV pre-S2Δ and HBV pre-S-expressing cells. Induction of Bcl-2 expression by HBV pre-S2Δ protein resulted in resistance to 5-fluorouracil treatment in colony formation, caspase-3 assay, and cell apoptosis, and can enhance cell death by co-incubation with Bcl-2 inhibitor. Similarly, transgenic mice showed higher expression of Bcl-2 in liver tissue expressing HBV pre-S2Δ large surface protein in vivo.

Conclusion/Significance

Our result demonstrates that HBV pre-S2Δ increased Bcl-2 expression which plays an important role in resistance to 5-fluorouracil-caused cell death. Therefore, these data provide an important chemotherapeutic strategy in HBV pre-S2Δ-associated tumor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号