首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global patters of species distributions and their underlying mechanisms are a major question in ecology, and the need for multi‐scale analyses has been recognized. Previous studies recognized climate, topography, habitat heterogeneity and disturbance as important variables affecting such patterns. Here we report on analyses of species composition – environment relationships among different taxonomic groups in two continents, and the components of such relationships, in the contiguous USA and Australia. We used partial Canonical Correspondence Analysis of occurrence records of mammals and breeding birds from the Global Biodiversity Information Facility, to quantify relationships between species composition and environmental variables in remote geographic regions at multiple spatial scales, with extents ranging from 105 to 107 km2 and sampling grids from 10 to 10,000 km2. We evaluated the concept that two elements contribute to the impact of environmental variables on composition: the strength of species' affinity to an environmental variable, and the amount of variance in the variable. To disentangle these two elements, we analyzed correlations between resulting trends and the amount of variance contained in different environmental variables to isolate the mechanisms behind the observed relationships. We found that climate and land use‐land cover are responsible for most explained variance in species composition, regardless of scale, taxonomic group and geographic region. However, the amount of variance in species composition attributed to land use / land cover (LULC) was closely related to the amount of intrinsic variability in LULC in the USA, but not in Australia, while the effect of climate on species composition was negatively correlated to the variability found in the climatic variables. The low variance in climate, compared to LULC, suggests that species in both taxonomic groups have strong affinity to climate, thus it has a strong effect on species distribution and community composition, while the opposite is true for LULC.  相似文献   

2.
Aim This study investigates the determinants of European‐scale patterns in tree species composition and richness, addressing the following questions: (1) What is the relative importance of environment and history? History refers to lasting effects of past large‐scale events and time‐dependent cumulative effects of ongoing processes, notably dispersal limited range dynamics. (2) Among the environmental determinants, what is the relative importance of climate, soils, and forest cover? (3) Do the answers to questions 1 and 2 differ between conifers and Fagales, the two major monophyletic groups of European trees? Location The study area comprises most of Europe (34° N–72° N and 11° W–32° E). Methods Atlas data on native distributions of 54 large tree species at 50 × 50 km resolution were linked with climatic, edaphic, and forest cover maps in a geographical information system. Unconstrained (principal components analysis using Hellinger distance transformation and detrended correspondence analysis) and constrained ordinations (redundancy analysis using Hellinger distance transformation and canonical correspondence analysis) and multiple linear regressions were used to investigate the determinants of species composition and species richness, respectively. History is expected to leave its mark as broad spatial patterns and was represented by the nine spatial terms of a cubic trend surface polynomial. Results The main floristic pattern identified by all ordinations was a latitude‐temperature gradient, while the lower axes corresponded mostly to spatial variables. Partitioning the floristic variation using constrained ordinations showed the mixed spatial‐environmental and pure spatial fractions to be much greater than the pure environmental fraction. Biplots, forward variable selection, and partial analyses all suggested climatic variables as more important floristic determinants than forest cover or soil variables. Tree species richness peaked in the mountainous regions of East‐Central and Southern Europe, except the Far West. Variation partitioning of species richness found the mixed spatial‐environmental and pure spatial fractions to be much greater than the pure environmental fraction for all species combined and Fagales, but not for conifers. The scaled regression coefficients indicated climate as a stronger determinant of richness than soils or forest cover. While the dominant patterns were similar for conifers and Fagales, conifers exhibited less predictable patterns overall, a smaller pure spatial variation fraction relative to pure environmental fraction, and a greater relative importance of climate; all differences being more pronounced for species richness than for species composition. Main conclusions The analyses suggest that history is at least as important as current environment in controlling species composition and richness of European trees, with the exception of conifer species richness. Strong support for interpreting the spatial patterns as outcomes of historical processes, notably dispersal limitation, came from the observation that many European tree species naturalize extensively outside their native ranges. Furthermore, it was confirmed that climate predominates among environmental determinants of distribution and diversity patterns at large spatial scales. Finally, the particular patterns exhibited by conifers probably reflect greater environmental specialization and greater human impact. These findings warn against expecting the European tree flora to be able track fast future climate changes on its own.  相似文献   

3.
Aims Spatial processes and environmental control are the two distinct, yet not mutually exclusive forces of community structuring, but the relative importance of these factors is controversial due to the species-specific dispersal ability, sensitivity towards environmental variables, organism's abundance and the effect of spatial scale. In the present paper, we explored spatial versus environmental control in shaping community composition (i.e. β-diversity) and species turnover (i.e. change of β-diversity) at an alpine meadow along a slope aspect gradient on the Qinghai–Tibetan Plateau at different spatial scales of sampling (quadrats and plots), by taking account of seed dispersal mode and abundance.Methods We examined the relative importance of spatial processes and environmental factors using all species and four additional subsets of selected species. Moreover, we attempted to explore the effect of scale (quadrat refers to scale of ~0.3 m and plot of ~8 m) on their counter balance. The data were analyzed both by variation partitioning and multiple regressions on distance matrices. The spatial structure was modelled using Moran's eigenvector maps (MEM).Important findings Both spatial processes and environmental factors were important determinants of the community composition and species turnover. The community composition in the alpine meadow was controlled by spatially structured environment (17.6%), space independent of environment (18.0%) and a negligible effect of environment independent of space (4.4%) at the scale of quadrats. These three components contributed 21.8, 9.9 and 13.9%, respectively, at the scale of plots. The balance between the forces at different spatial scales drove community structures along the slope aspect gradient. The importance of environmental factors on β-diversity at alpine meadow increased with scale while that of spatial processes decreased or kept steady, depending on dispersal mode and abundance of species comprising the subset. But the 'pure' effect of spatial processes on species turnover increased with scale while that of environmental factors decreased. This discrepancy highlights that β-diversity and species turnover were determined jointly by spatial processes and environmental factors. We also found that the relative roles of these processes vary with spatial scale. These results underline the importance of considering species-specific dispersal ability and abundance of species comprising the communities and the appropriate spatial scale in understanding the mechanisms of community assembly.  相似文献   

4.
The major processes generating pattern in plant community composition depend upon the spatial scale and resolution of observation, therefore understanding the role played by spatial scale on species patterns is of major concern. In this study, we investigate how well environmental (topography and soil variables) and spatial variables explain variation in species composition in a 25-ha temperate forest in northeastern China. We used new variation partitioning approaches to discover the spatial scale (using multi-scale spatial PCNM variables) at which environmental heterogeneity and other spatially structured processes influence tree community composition. We also test the effect of changing grain of the study (i.e. quadrat size) on the variation partitioning results. Our results indicate that (1) species composition in the Changbai mixed broadleaf-conifer forest was controlled mainly by spatially structured soil variation at broad scales, while at finer scales most of the explained variation was of a spatial nature, pointing to the importance of biotic processes. (2) These results held at all sampling grains. However, reducing quadrat size progressively reduced both spatially and environmentally explained variance. This probably partly reflects increasing stochasticity in species abundances, and the smaller proportion of quadrats occupied by each species, when quadrat size is reduced. The results suggest that environmental heterogeneity (i.e. niche processes) and other biotic processes such as dispersal work together, but at different spatial scales, to build up diversity patterns.  相似文献   

5.
Aim To develop a landscape‐level model that partitions variance in plant community composition among local environmental, regional environmental, and purely spatial predictive variables for pyrogenic grasslands (prairies, savannas and woodlands) throughout northern and central Florida. Location North and central Florida, USA. Methods We measured plant species composition and cover in 271 plots throughout the study region. A variation‐partitioning model was used to quantify components of variation in species composition associated with the main and interaction effects of soil and topographic variables, climate variables and spatial coordinates. Partial correlations of environmental variables with community variation were identified using direct gradient analysis (redundancy analysis and partial redundancy analysis) and Monte Carlo tests of significance. Results Community composition was most strongly related to edaphic variables at local scales in association with topographic gradients, although geographically structured edaphic, climatic and pure spatial effects were also evident. Edaphic variables explained the largest portion of total variation explained (TVE) as a main effect (48%) compared with the main effects of climate (9%) and pure spatial factors (9%). The remaining TVE was explained by the interaction effect of climate and spatial factors (13%) and the three‐way interaction (22%). Correlation analyses revealed that the primary compositional gradient was related to soil fertility and topographic position corresponding to soil moisture. A second gradient represented distinct geographical separation between the Florida panhandle and peninsular regions, concurrent with differences in soil characteristics. Gradients in composition corresponded to species richness, which was lower in the Florida peninsula. Main conclusions Environmental variables have the strongest influence on the species composition of Florida pyrogenic grasslands at both local and regional scales. However, the limited distributions of many plant taxa suggest historical constraints on species distributions from one physiographical region to the other (Florida panhandle and peninsula), although this pattern is partially confounded by regionally spatially structured environmental variables. Our model provides insight into the relative importance of local‐ and regional‐scale environmental effects as well as possible historical constraints on floristic variation in pine‐dominated pyrogenic grasslands of the south‐eastern USA.  相似文献   

6.
The selection of relevant factors and appropriate spatial scale(s) is fundamental when modelling species response to climate change. We evaluated whether the effects of climate factors on species distribution/occurrence are consistently modelled over different spatial scales in birds, and used a two‐scale approach to identify species–climate correlations unlikely to represent causal effects. We used passerine birds inhabiting mountain grassland in the Apennines (Italy) as a model. We surveyed four grassland species at 400 sampling points, and built habitat selection models (territory scale) and distribution models (seven algorithms, landscape scale). We compared the effect of climatic predictors on occurrence/distribution highlighted by models over the two spatial scales, and with the effects supposed a priori based on the climatic niche of each species. Models at the territory level included at least one climatic predictor for three species; the observed effect of climatic predictors was seldom consistent with supposed effects. At the broadest scale, distribution models for all species included climatic predictors, with varying consistence with supposed effects and findings at the finer scale. Despite the importance of climate for species distribution, occurrence could be more directly related to other factors, with important implications for understanding/predicting the impacts of climate/environmental changes. Our approach revealed key variables for grassland birds, and highlighted the scale‐dependent perceived importance of climate. At the local scale, climate effects were weak or hard to interpret. We found a general lack of consistence between supposed and observed effects at the territory level, and between landscape and territory models. Our results show the importance of predicting the potential effect of climatic factors prior to the analyses, carefully selecting ecologically meaningful variables and scales, and evaluating the nature and scale of climate–species links. We call for caution when predicting under future climates, especially when mechanistic effects and consistency across scales are lacking.  相似文献   

7.
8.
Interpretation of landscape patterns from the perspective of different species allows knowing the way in which they perceive landscape, and how their perception varies with scale. We examined distribution of four small mammal species at different scales over a landscape including protected and grazed areas, and associated species distribution with landscape structure. The study was conducted in the central Monte Desert (Reserve of Ñacuñán). Trap grids were set in both areas at two scales, varying their grain and extent. To determine whether spatial patterns are random, clumped or regular, we used a point pattern analysis. Logistic regressions were performed to relate the presence-absence of small mammals to environmental variables. Intensity of the point pattern was not constant, either in the Reserve or the grazed area. Small mammal abundance exhibited a heterogeneous distribution, and the existence of a first-order effect was detected for all species. No second-order effects were detected, the point pattern was random for all species in both areas. Both areas were differently perceived by rodent species. Habitat structure in both conditions and its variations with scale appear to be important factors affecting distribution patterns.  相似文献   

9.
We investigated the role of environmental filtering as an underlying mechanism of assembly of compound communities of fleas parasitic on Palearctic small mammals at two spatial scales; a continental scale (encompassing regions across the entire Palearctic) and a regional scale (across sampling localities within Slovakia). We used the three‐table ordination (the RLQ analysis) and its extended version that links species occurrences with geographic space, environmental variables, and species traits and phylogeny (the ESLTP analysis). We asked whether environmental filtering acts as an assembly rule of compound communities of fleas and, if yes, a) whether the effect of environment on species composition of compound communities of fleas differs between spatial scales and b) what are the relative importance of the abiotic and host environments. We found that compound communities of fleas are, to a great extent, assembled via environmental filters that represent interplay between filtering via abiotic environment and filtering via host composition. The relative importance of these two components of environmental filtering differed between spatial scales. Host composition had a stronger effect on flea assembly than abiotic environment on the continental scale, while the opposite was true for the regional scale. The likely reason behind this scale‐dependence is that communities on the regional scale are mainly governed by ecological and epidemiological processes, while communities on the continental scale are mainly affected by evolutionary, biogeographic and historical forces.  相似文献   

10.
It has been suggested that a heterogeneous environment enhances species richness and allows for the coexistence of species. However, there is increasing evidence that environmental heterogeneity can have no effect or even a negative effect on plant species richness and plant coexistence at a local scale. We examined whether plant species richness increases with local heterogeneity in the water table depth, microtopography, pH and light availability in a swamp forest community at three local spatial scales (grain: 0.6, 1.2 and 11.4 m). We also used the variance partitioning approach to assess the relative contributions of niche-based and other spatial processes to species occurrence. We found that heterogeneity in microtopography and light availability positively correlated with species richness, in accordance with the habitat heterogeneity hypothesis. However, we recorded different heterogeneity-diversity relationships for particular functional species groups. An increase in the richness of bryophytes and woody plant species was generally related to habitat heterogeneity at all measured spatial scales, whereas a low impact on herbaceous species richness was recorded only at the 11.4 m scale. The distribution of herbaceous plants was primarily explained by other spatial processes, such as dispersal, in contrast to the occurrence of bryophytes, which was better explained by environmental factors. Our results suggest that both niche-based and other spatial processes are important determinants of the plant composition and species turnover at local spatial scales in swamp forests.  相似文献   

11.
Understanding the ecological mechanisms driving beta diversity is a major goal of community ecology. Metacommunity theory brings new ways of thinking about the structure of local communities, including processes occurring at different spatial scales. In addition to new theories, new methods have been developed which allow the partitioning of individual and shared contributions of environmental and spatial effects, as well as identification of species and sites that have importance in the generation of beta diversity along ecological gradients. We analyzed the spatial distribution of dung beetle communities in areas of Atlantic Forest in a mainland-island scenario in southern Brazil, with the objective of identifying the mechanisms driving composition, abundance and biomass at three spatial scales (mainland-island, areas and sites). We sampled 20 sites across four large areas, two on the mainland and two on the island. The distribution of our sampling sites was hierarchical and areas are isolated. We used standardized protocols to assess environmental heterogeneity and sample dung beetles. We used spatial eigenfunctions analysis to generate the spatial patterns of sampling points. Environmental heterogeneity showed strong variation among sites and a mild increase with increasing spatial scale. The analysis of diversity partitioning showed an increase in beta diversity with increasing spatial scale. Variation partitioning based on environmental and spatial variables suggests that environmental heterogeneity is the most important driver of beta diversity at the local scale. The spatial effects were significant only at larger spatial scales. Our study presents a case where environmental heterogeneity seems to be the main factor structuring communities at smaller scales, while spatial effects are more important at larger scales. The increase in beta diversity that occurs at larger scales seems to be the result of limitation in species dispersal ability due to habitat fragmentation and the presence of geographical barriers.  相似文献   

12.
Aim To determine the relationship between the species richness of woody plants and that of mammals after accounting for the effect of environmental variables. Location Southern Africa, including Namibia, South Africa, Lesotho, Swaziland, Botswana, Zimbabwe, and part of Mozambique. Methods We used a comprehensive dataset including the species richness of mammals and of woody plants and environmental variables for 118 quadrats (each of 25,000 km2) across southern Africa, and used structural equation models (SEMs) and spatial regressions to examine the relationship between the species richness of woody plants and of mammal trophic guilds (herbivores, insectivores, carni/omnivores) and habitat guilds (aquatic/fossorial, ground‐living, climbers, aerial), after controlling for environment. We compared the results of SEMs with those of single‐predictor regressions (without controlling for environment) and of spatial regressions (controlling for both environment and residual spatial autocorrelation). Results The geographical variation of mammal species richness in southern Africa was strongly and positively related to that of woody plant species richness, and this relationship held for most mammal guilds even when the influence of environment and spatial autocorrelation had been accounted for. However, the effect of woody plant species richness on the richness of aquatic/fossorial species almost disappeared after controlling for environment, suggesting that the congruence in species richness patterns between these two groups results from similar responses to the same environmental variables. For many mammal guilds, the relative role of environmental predictors as measured by standardized partial regression coefficients changed depending on whether non‐spatial single‐predictor regressions, non‐spatial SEMs, or spatial regressions were used. Main conclusions Woody plants are important determinants of the species richness of most mammal guilds in southern Africa, even when controlling for environment and residual spatial autocorrelation. Environmental correlates with animal species richness as measured by simple correlations or single‐predictor regressions might not always reflect direct effects; they might, at least to some degree, result from indirect effects via woody plants. Interpretations of the strength of the effect of environmental variables on mammal species richness in southern Africa depend largely on whether spatial or non‐spatial models are used. We therefore stress the need for caution when interpreting environmental ‘effects’ on broad‐scale patterns of species richness if spatial and non‐spatial methods yield contrasting results.  相似文献   

13.
Processes responsible for shaping community patterns act at specific spatial scales. In this study, we aimed at disentangling the effects of climate, soil and space as drivers of variation in a coastal grassland plant community. We were specifically interested in evaluating the relative influence of those processes at broad and fine spatial scales as well as when considering species groups with good and poor long‐distance dispersal capacity. We sampled grassland vegetation at 16 sites distributed along a latitudinal gradient of more than 500 km in subtropical southern Brazil and used variation partitioning procedures to ascertain the relative influence of climatic, edaphic and spatial processes on variation in species composition at different spatial scales, considering the entire community and subsets with only species from the Asteraceae family (good long‐distance dispersal) and Poaceae (poor long‐distance dispersal). Climatic filters were the most responsible for shaping grassland community composition at the broad scale, while edaphic filters showed higher importance at the fine scale. When not considering the influence of spatial scale, we observed higher influence of climate structured in space. Composition patterns of species with poor long‐distance dispersal (Poaceae) were more closely related to spatial variables than those of species with effective dispersal (Asteraceae). Our results stressed the importance of addressing different spatial scales to rightly ascertain the magnitude that different drivers exert on plant community assembly. Dividing the community into groups with different dispersal abilities proved useful for a more detailed understanding of the community assembly processes.  相似文献   

14.
15.
Understanding patterns and mechanisms of variation in the compositional structure of communities across spatial scales is one of the fundamental challenges in ecology and biogeography. In this study, we evaluated the effects of spatial extent (i.e. size of study region) on: 1) whether community composition can be better explained by environmental (i.e. niche‐based) or spatial (e.g. dispersal‐based) processes ; and 2) how climate and soils contribute to the influence of environment on plant community composition. We surveyed community composition across a network of 398 forest plots spanning a ~4000 m elevational gradient in the Madidi region in northwestern Bolivia. Using redundancy analyses and hierarchical variation partitioning, we disentangled the effects of environmental and spatial predictors on species composition, further decomposing the environmental effect between its climatic and soil components. We repeated analyses for 200 sub‐regions ranging in spatial extent from ~250 to ~17 500 km2. Our analyses show a high degree of idiosyncrasy in results that come from different sub‐regions. Despite this variability, we were able to identify various important patterns in the structure of tropical plant communities in our study system. First, even though sub‐regions varied in size by nearly two orders of magnitude, the total amount of explained variation in community composition was scale independent; at all spatial scales, environment and space accounted for about 25% of the differences in community composition among plots. Second, the measured environmental effect was higher than the spatial effect on average and in the vast majority of sub‐regions. This was true regardless of the spatial extent of analysis. Finally, we found that both climatic and soil variables accounted for significant fractions of variation, but climate was always more important than soils.  相似文献   

16.
We studied spatial variation of macroinvertebrate species richness in headwater streams at two spatial extents, within and across drainage systems, and assessed the relative importance of three groups of variables (local, landscape and regional) at each extent. We specifically asked whether the same variables proposed to control broad‐scale richness patterns of terrestrial organisms (temperature, topographic variability) are important determinants of species richness also in streams, or whether environmental factors effective at mainly local scales (in‐stream heterogeneity, potential productivity) constrain species richness in local communities. We used forward selection with two stopping criteria to identify the key environmental and spatial variables at each study extent. Eigenvector‐based spatial filtering was applied to evaluate spatial patterns in species richness, and variation partitioning was used to assess the amount of variation in richness attributable to purely environmental and spatial components. A prime regulator of richness variation at the bioregion extent was elevation range (increasing richness with higher topographic variability), whereas hydrological stability and temperature were unimportant. Water chemistry variables, particularly water color, exhibited strong spatially‐structured variation across drainage systems. Local environmental variables explained most of the variation in species richness at the drainage‐system extent, reflecting gradients in total phosphorus and water color (negative effect on richness). The importance of the pure spatial component was strongly region‐dependent, with a peak (60%) in one drainage system, suggesting the presence of unmeasured environmental factors. Our results emphasize the need for spatially‐explicit, regional studies to better understand geographical variation of freshwater biodiversity. Future studies need to relate species richness not only to local factors but also to broad‐scale climatic variables, recognizing the presence of spatially‐structured environmental variation.  相似文献   

17.
With the expected increase in the spread of invasive species, examination of factors controlling distributions at multiple spatial scales and ecological modelling of their potential distributions are important analyses for informed decision-making. The scale-dependence of mechanisms influencing invasion by non-native species has been shown previously, indicating that studies of key factors affecting invasive species distributions at multiple spatial scales are critical for successful management. Freshwater systems are particularly vulnerable to invasive species, yet few studies have examined the environmental factors influencing distributions of invasive species at multiple spatial scales. We examined the effect of environmental variables on the predicted distribution of the invasive aquatic grass Glyceria maxima over continental, regional and local scales in Australia. We undertook an initial critical evaluation of which predictor variables were most appropriate to use at each scale, largely considering prior knowledge. On a continental scale, climatic, topographic and hydrological variables predicted well the potential distribution of G. maxima, identifying temperate regions as most susceptible to invasion. The regional analysis found that dense, woody, riparian vegetation has a strong negative impact on the occurrence of G. maxima, especially at intermediate elevations. The invasive grass was found less often on biotite granite and on fluvial geology. At a local scale, occurrence of G. maxima was related positively to soil phosphorus and nitrogen, and negatively related to soil organic carbon. The identification of key factors affecting invasive species distributions at multiple spatial scales will inform prevention schemes, assist targeted field sampling for the development of monitoring programs, and allow prioritization of control methods.  相似文献   

18.
Aim Many competing hypotheses seek to identify the mechanisms behind species richness gradients. Yet, the determinants of species turnover over broad scales are uncertain. We test whether environmental dissimilarity predicts biotic turnover spatially and temporally across an array of environmental variables and spatial scales using recently observed climate changes as a pseudo‐experimental opportunity. Location Canada. Methods We used an extensive database of observation records of 282 Canadian butterfly species collected between 1900 and 2010 to characterize spatial and temporal turnover based on Jaccard indices. We compare relationships between spatial turnover and differences in an array of relevant environmental conditions, including aspects of temperature, precipitation, elevation, primary productivity and land cover. Measurements were taken within 100‐, 200‐ and 400‐km grid cells, respectively. We tested the relative importance of each variable in predicting spatial turnover using bootstrap analysis. Finally, we tested for effects of temperature and precipitation change on temporal turnover, including distinctly accounting for turnover under individual species’ potential dispersal limitations. Results Temperature differences between areas correlate with spatial turnover in butterfly assemblages, independently of distance, sampling differences or the spatial resolution of the analysis. Increasing temperatures are positively related to biotic turnover within quadrats through time. Limitations on species dispersal may cause observed biotic turnover to be lower than expected given the magnitude of temperature changes through time. Main conclusions Temperature differences can account for spatial trends in biotic dissimilarity and turnover through time in areas where climate is changing. Butterfly communities are changing quickly in some areas, probably reflecting the dispersal capacities of individual species. However, turnover is lower through time than expected in many areas, suggesting that further work is needed to understand the factors that limit dispersal across broad regions. Our results illustrate the large‐scale effects of climate change on biodiversity in areas with strong environmental gradients.  相似文献   

19.
Urbanization is one of the most pervasive processes of landscape transformation, responsible for novel selection agents promoting functional community homogenization. Bats may persist in those environments, but the mechanisms responsible for their adaptability and the spatial scales in which the landscape imposes environmental filtering remain poorly studied in the Neotropics. We tested the hypothesis that landscape composition interacts with the spatial scale to affect the functional diversity of phyllostomids in an urban–rural gradient. Based on functional traits, we calculated indices of functional richness, divergence, evenness, and community-weighted means of morphological traits, and classified species into functional groups. We evaluated the changes in those variables in response to forest, grassland, and urbanized areas at 0.5, 1.25, and 2km scales. The number of functional groups, functional richness, and functional evenness tended to be higher in areas far from cities and with higher forest cover, whereas functional divergence increased in more urbanized areas. Our results show that the mean value of wing loading in the assemblage was negatively associated with landscape transformation at several spatial scales. However, environmental filtering driven by grass cover was particularly robust at the 0.5km scale, affecting big-sized species with long-pointed wings. Retaining natural forest in cattle ranging systems at ~12 km2 appears to favor the functional evenness and number of functional groups of phyllostomids. Recognizing the scale of the effect on phyllostomid functional responses appears to be a fundamental issue for elucidating the spatial extent to which phyllostomid conservation planning in urban–rural landscapes should be addressed.  相似文献   

20.
Environmental controls were traditionally considered as sole determinants of community assembly for freshwater bioassessment studies, whereas potential importance of dispersal processes and spatial scale have received limited attention. We conducted a bioassessment of lakes across northeast Alberta, Canada using crustacean zooplankton to develop a framework for evaluating if and how atmospheric emissions from the nearby Athabasca Oil Sands Region could impact their community assemblages. We quantified the effects of environmental gradients and spatially contingent dispersal processes for determining zooplankton community composition of 97 lakes at two spatial scales (regional and sub-regional) using constrained ordination, spatial modeling and variance partitioning techniques. Our findings indicated that effects of both environmental gradients and dispersal processes on species composition were scale-dependent. Zooplankton community composition was significantly correlated to environmental parameters that are directly and indirectly sensitive to industrial deposition including nitrate, sulphate, dissolved organic carbon, base cation, chloride, trace metal concentrations and predation regime, indicating their potential to track future environmental impacts. The relative importance of these environmental predictors varied with spatial scale, yet unraveling the effects of natural environmental heterogeneity vs. industrial deposition on this scale-dependency was not possible due to lack of regional baseline information. Dispersal processes were not important in shaping zooplankton communities at the sub-regional scale, but had limited, yet significant influence on species composition at the regional scale, emphasizing the need for cautious interpretation of broad-scale community patterns. Beyond establishing crucial regional baselines, our study highlights the necessity for explicit incorporation of dispersal effects and spatial scale in bioassessment of lakes across landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号