首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelial progenitor cells (EPCs) play a significant role in physiological and pathological hypoxia resistance and neovascularization processes. The ability to mobilize EPCs from bone marrow usually indicates a prognostic endpoint of several vascular diseases. Thus, it is of great value to study possible approaches for activating functional EPCs. The mobilization/homing of EPCs from bone marrow is signalled by stromal‐derived factor‐1 (SDF‐1), which is regulated by the hypoxia‐inducible factor‐1α (HIF‐1α). This study investigated the effects of directly manipulating HIF‐1α on human EPCs in vitro. EPCs were isolated from human umbilical cord blood. Lentiviral vectors carrying HIF‐1α and shRNA targeting HIF‐1α were constructed for gene modification of the EPCs. Results demonstrated that after overexpression of HIF‐1α by lentiviral transfection, the proliferative capacity of EPCs was elevated while the apoptosis was inhibited and vice versa. On the other hand, the expression of angiogenic‐related cytokines including SDF‐1 was upregulated on both gene and protein levels when EPCs were transfected with HIF‐1α. These results indicate that direct HIF‐1α manipulation over human EPCs is an effective method to promote EPC function and mobilization, thus suggest that drugs or reagents that elevate HIF‐1α expression are capable of treating ischemic diseases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti‐inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009 ]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood‐derived AC133+ cells that produce functional EPC progenies. Decursin dose‐dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle‐shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin‐2, angiopoietin receptor Tie‐2, Flk‐1 (vascular endothelial growth factor receptor‐2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose‐dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor‐induced mobilization of circulating EPCs (CD34 + /VEGFR‐2+ cells) from bone marrow and early incorporation of Dil‐Ac‐LDL‐labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild‐type‐ or bone‐marrow‐transplanted mice. Accordingly, decursin attenuated EPC‐derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. J. Cell. Biochem. 113: 1478–1487, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Recently, the dipeptidyl peptidase‐4 (DPP‐4) inhibitor sitagliptin, a major anti‐hyperglycaemic agent, has received substantial attention as a therapeutic target for cardiovascular diseases via enhancing the number of circulating endothelial progenitor cells (EPCs). However, the direct effects of sitagliptin on EPC function remain elusive. In this study, we evaluated the proangiogenic effects of sitagliptin on a diabetic hind limb ischaemia (HLI) model in vivo and on EPC culture in vitro. Treatment of db/db mice with sitagliptin (Januvia) after HLI surgery efficiently enhanced ischaemic angiogenesis and blood perfusion, which was accompanied by significant increases in circulating EPC numbers. EPCs derived from the bone marrow of normal mice were treated with high glucose to mimic diabetic hyperglycaemia. We found that high glucose treatment induced EPC apoptosis and tube formation impairment, which were significantly prevented by sitagliptin pretreatment. A mechanistic study found that high glucose treatment of EPCs induced dramatic increases in oxidative stress and apoptosis; pretreatment of EPCs with sitagliptin significantly attenuated high glucose‐induced apoptosis, tube formation impairment and oxidative stress. Furthermore, we found that sitagliptin restored the basal autophagy of EPCs that was impaired by high glucose via activating the AMP‐activated protein kinase/unc‐51‐like autophagy activating kinase 1 signalling pathway, although an autophagy inhibitor abolished the protective effects of sitagliptin on EPCs. Altogether, the results indicate that sitagliptin‐induced preservation of EPC angiogenic function results in an improvement of diabetic ischaemia angiogenesis and blood perfusion, which are most likely mediated by sitagliptin‐induced prevention of EPC apoptosis via augmenting autophagy.  相似文献   

4.
Attenuating oxidative stress‐induced damage and promoting endothelial progenitor cell (EPC) differentiation are critical for ischaemic injuries. We suggested monotropein (Mtp), a bioactive constituent used in traditional Chinese medicine, can inhibit oxidative stress‐induced mitochondrial dysfunction and stimulate bone marrow‐derived EPC (BM‐EPC) differentiation. Results showed Mtp significantly elevated migration and tube formation of BM‐EPCs and prevented tert‐butyl hydroperoxide (TBHP)‐induced programmed cell death through apoptosis and autophagy by reducing intracellular reactive oxygen species release and restoring mitochondrial membrane potential, which may be mediated viamTOR/p70S6K/4EBP1 and AMPK phosphorylation. Moreover, Mtp accelerated wound healing in rats, as indicated by reduced healing times, decreased macrophage infiltration and increased blood vessel formation. In summary, Mtp promoted mobilization and differentiation of BM‐EPCs and protected against apoptosis and autophagy by suppressing the AMPK/mTOR pathway, improving wound healing in vivo. This study revealed that Mtp is a potential therapeutic for endothelial injury‐related wounds.  相似文献   

5.
Exercise training (ET) is a safe and efficacious therapeutic approach for myocardial infarction (MI). Given the numerous benefits of exercise, exercise‐induced mediators may be promising treatment targets for MI. C57BL/6 mice were fed 1‐trifluoromethoxyphenyl‐3‐(1‐propionylpiperidine‐4‐yl) urea (TPPU), a novel soluble epoxide hydrolase inhibitor (sEHI), to increase epoxyeicosatrienoic acid (EET) levels, for 1 week before undergoing MI surgery. After 1‐week recovery, the mice followed a prescribed exercise programme. Bone marrow‐derived endothelial progenitor cells (EPCs) were isolated from the mice after 4 weeks of exercise and cultured for 7 days. Angiogenesis around the ischaemic area, EPC functions, and the expression of microRNA‐126 (miR‐126) and its target gene Spred1 were measured. The results were confirmed in vitro by adding TPPU to EPC culture medium. ET significantly increased serum EET levels and promoted angiogenesis after MI. TPPU enhanced the effects of ET to reduce the infarct area and improve cardiac function after MI. ET increased EPC function and miR‐126 expression, which were further enhanced by TPPU, while Spred1 expression was significantly down‐regulated. Additionally, the protein kinase B/glycogen synthase kinase 3β (AKT/GSK3β) signalling pathway was activated after the administration of TPPU. EETs are a potential mediator of exercise‐induced cardioprotection in mice after MI. TPPU enhances exercise‐induced cardiac recovery in mice after MI by increasing EET levels and promoting angiogenesis around the ischaemic area.  相似文献   

6.
Prostacyclin (PGI2) is a potent vasodilator and important mediator of vascular homeostasis; however, its clinical use is limited because of its short (<2‐min) half‐life. Thus, we hypothesize that the use of engineered endothelial progenitor cells (EPCs) that constitutively secrete high levels of PGI2 may overcome this limitation of PGI2 therapy. A cDNA encoding COX‐1‐10aa‐PGIS, which links human cyclooxygenase‐1 (COX‐1) to prostacyclin synthase (PGIS), was delivered via nucleofection into outgrowth EPCs derived from rat bone marrow mononuclear cells. PGI2‐secreting strains (PGI2‐EPCs) were established by continuous subculturing of transfected cells under G418 selection. Genomic PCR, RT‐PCR, and Western blot analyses confirmed the overexpression of COX‐1‐10aa‐PGIS in PGI2‐EPCs. PGI2‐EPCs secreted significantly higher levels of PGI2 in vitro than native EPCs (P < 0.05) and showed higher intrinsic angiogenic capability; conditioned medium (CM) from PGI2‐EPCs promoted better tube formation than CM from native EPCs (P < 0.05). Cell‐ and paracrine‐mediated in vitro angiogenesis was attenuated when COX‐1‐10aa‐PGIS protein expression was knocked down. Whole‐cell patch‐clamp studies showed that 4‐aminopyridine‐sensitive K+ current density was increased significantly in rat smooth muscle cells (rSMCs) cocultured under hypoxia with PGI2‐EPCs (7.50 ± 1.59 pA/pF; P < 0.05) compared with rSMCs cocultured with native EPCs (3.99 ± 1.26 pA/pF). In conclusion, we successfully created EPC strains that overexpress an active novel enzyme resulting in consistent secretion of PGI2. PGI2‐EPCs showed enhanced intrinsic proangiogenic properties and provided favorable paracrine‐mediated cellular protections, including promoting in vitro angiogenesis of native EPCs and hyperpolarization of SMCs under hypoxia. J. Cell. Physiol. 227: 2907–2916, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
Neovascularization is essential for tumor growth. We have previously reported that the chemokine receptor CXCR2 is an important regulator in tumor angiogenesis. Here we report that the mobilization of bone marrow (BM)-derived endothelial progenitor cells (EPCs) is impaired in CXCR2 knockout mice harboring pancreatic cancers. The circulating levels of EPCs (positive for CD34, CD117, CD133, or CD146) are decreased in the bone marrow and/or blood of tumor-bearing CXCR2 knockout mice. CXCR2 gene knockout reduced BM-derived EPC proliferation, differentiation, and vasculogenesis in vitro. EPCs double positive for CD34 and CD133 increased tumor angiogenesis and pancreatic cancer growth in vivo. In addition, CD133(+) and CD146(+) EPCs in human pancreatic cancer are increased compared with normal pancreas tissue. These findings indicate a role of BM-derived EPC in pancreatic cancer growth and provide a cellular mechanism for CXCR2 mediated tumor neovascularization.  相似文献   

8.
目的:探讨从小鼠骨髓中分离、培养、诱导分化及鉴定两种内皮祖细胞的方法,为进一步研究和临床应用奠定基础。方法:密度梯度离心法分离小鼠骨髓单个核细胞,接种于内皮祖细胞条件培养基,通过贴壁培养法培养出早期内皮祖细胞和晚期内皮祖细胞,并在0 d、6 d、10 d流式鉴定早期内皮祖细胞,在第8周流式鉴定晚期内皮祖细胞。结果:通过体外贴壁扩增培养,从小鼠骨髓细胞中成功培养出EEPC(早期内皮祖细胞)和EOC(晚期内皮祖细胞),表达CD34+/CD133+/VEGFR2+的EEPC比例从最初的0.08%能够增长至70%;EOC大约出现于3-4周,5-8周时呈现指数增长,具有典型的内皮细胞鹅卵石样形态,表达CD31、VEGFR2等内皮细胞表面标志而不表达CD34、CD133等干细胞表面标志。结论:确立了内皮祖细胞体外分离培养和诱导分化的实验方法,为进一步研究奠定基础。  相似文献   

9.
In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells.  相似文献   

10.
内皮祖细胞(EPC)是一种多潜能细胞,主要来源于骨髓。外周血EPC可以参与修复多种血管内皮细胞损伤的疾病。目前研究证实EPC通过动员、迁移、归巢和分化等步骤在受损的肺组织处参与内皮细胞修复,调节失控的炎症反应,增强抗氧化能力,对修复和维持肺泡毛细血管屏障的完整性起着重要作用。EPC在心血管疾病和组织工程领域应用研究的成功,为EPC在急性肺损伤的治疗提供了新的思路。  相似文献   

11.
Hypoxia inducible factor-1 alpha (HIF-1 alpha) is a key determinant of oxygen-dependent gene regulation in angiogenesis. HIF-1 alpha overexpression may be beneficial in cell therapy of hypoxia-induced pathophysiological processes, such as ischemic heart disease. To address this issue, human peripheral blood mononuclear cells (PBMNCs) were induced to differentiate into endothelial progenitor cells (EPCs), and then were transfected with either an HIF-1 alpha-expressing or a control vector and cultured under normoxia or hypoxia. Hypoxia-induced HIF-1 alpha mRNA and protein expression was increased after HIF-1 alpha transfection. This was accompanied by VEGF mRNA induction and increased VEGF secretion. Hypoxia-stimulated VEGF mRNA induction was significantly abrogated by HIF-1 alpha-specific siRNA. Functional studies showed that HIF-1 alpha overexpression further promoted hypoxia-induced EPC differentiation, proliferation and migration. The expressions of endothelial cell markers CD31, VEGFR2 (Flk-1) and eNOS as well as VEGF and NO secretions were also increased. Furthermore, in an in vivo model of hindlimb ischemia, HIF-1 alpha-transfected EPCs homed to the site of ischemia. A higher revascularization potential was also demonstrated by increased capillary density at the injury site. Our results revealed that endothelial progenitor cells ex vivo modification by hypoxia inducible factor-1 alpha gene transfection is feasible and may offer significant advantages in terms of EPC expansion and treatment efficacy.  相似文献   

12.
To date, there is no report on the effect of antioxidants on endothelial progenitor cells (EPCs). This study shows that in vitro incubation of EPCs with vitamin C and E reverted the already well documented lowering effect of TNF-α on EPC number and increased p-p38 expression levels. In order to document major changes of gene expression levels and gain insight into signalling pathways, microarray analysis was performed and a significant variation of the expression of 5389 genes in EPCs following antioxidant treatment was detected. Also in vivo evidence is provided about the positive effect of antioxidant vitamins on EPCs, since vitamin C and E supplementation potentiated the physical training-induced increase of EPC number and VEGF levels. Together, these data indicate that antioxidant treatment ameliorates EPC number and causes major changes of gene expression within these cells in vitro. Furthermore, concomitant antioxidant supplementation and physical training in vivo raised the levels of circulating EPCs and serum VEGF more than physical training alone.  相似文献   

13.
In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood‐brain barrier (BBB) breakdown. After intravenous or intra‐arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti‐β‐amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti‐β‐amyloid Fab protein functions in β‐amyloid aggregate solubilization.  相似文献   

14.
Bone repair involves bone resorption through osteoclastogenesis and the stimulation of neovascularization and osteogenesis by endothelial progenitor cells (EPCs). However, the role of EPCs in osteoclastogenesis is unclear. In this study, we assess the effects of EPC‐derived exosomes on the migration and osteoclastic differentiation of primary mouse bone marrow‐derived macrophages (BMMs) in vitro using immunofluorescence, western blotting, RT‐PCR and Transwell assays. We also evaluated the effects of EPC‐derived exosomes on the homing and osteoclastic differentiation of transplanted BMMs in a mouse bone fracture model in vivo. We found that EPCs cultured with BMMs secreted exosomes into the medium and, compared with EPCs, exosomes had a higher expression level of LncRNA‐MALAT1. We confirmed that LncRNA‐MALAT1 directly binds to miR‐124 to negatively control miR‐124 activity. Moreover, overexpression of miR‐124 could reverse the migration and osteoclastic differentiation of BMMs induced by EPC‐derived exosomes. A dual‐luciferase reporter assay indicated that the integrin ITGB1 is the target of miR‐124. Mice treated with EPC‐derived exosome‐BMM co‐transplantations exhibited increased neovascularization at the fracture site and enhanced fracture healing compared with those treated with BMMs alone. Overall, our results suggest that EPC‐derived exosomes can promote bone repair by enhancing recruitment and differentiation of osteoclast precursors through LncRNA‐MALAT1.  相似文献   

15.
Endothelial progenitor cells (EPCs) are a group of heterogeneous cells in bone marrow (BM) and blood. Ischaemia increases reactive oxygen species (ROS) production that regulates EPC number and function. The present study was conducted to determine if ischaemia‐induced ROS differentially regulated individual EPC subpopulations using a mouse model concomitantly overexpressing superoxide dismutase (SOD)1, SOD3 and glutathione peroxidase. Limb ischaemia was induced by femoral artery ligation in male transgenic mice with their wild‐type littermate as control. BM and blood cells were collected for EPCs analysis and mononuclear cell intracellular ROS production, apoptosis and proliferation at baseline, day 3 and day 21 after ischaemia. Cells positive for c‐Kit+/CD31+ or Sca‐1+/Flk‐1+ or CD34+/CD133+ or CD34+/Flk‐1+ were identified as EPCs. ischaemia significantly increased ROS production and cell apoptosis and decreased proliferation of circulating and BM mononuclear cells and increased BM and circulating EPCs levels. Overexpression of triple antioxidant enzymes effectively prevented ischaemia‐induced ROS production with significantly decreased cell apoptosis and preserved proliferation and significantly increased circulating EPCs level without significant changes in BM EPC populations, associated with enhanced recovery of blood flow and function of the ischemic limb. These data suggested that ischaemia‐induced ROS was differentially involved in the regulation of circulating EPC population.  相似文献   

16.
Among the many tissue stem or progenitor cells recently being unveiled, endothelial progenitor cells (EPCs) have attracted particular attention, not only because of their cardinal role in vascular biology and embryology but also because of their potential use in the therapeutic development of a variety of postnatal diseases, including cardiovascular and peripheral vascular disorders and cancer. The aim of this study is to provide some basic and comprehensive information on gene expression of EPCs to characterize the cells in molecular terms. Here, we focus on EPCs derived from CD34-positive mononuclear cells of human umbilical cord blood. The EPCs were purified and expanded in culture and analyzed by a high-density oligonucleotide microarray and real-time RT-PCR analysis. We identified 169 up-regulated and 107 down-regulated genes in the EPCs compared with three differentiated endothelial cells of human umbilical vein endothelial cells (HUVEC), human lung microvascular endothelial cells (LMEC) and human aortic endothelial cells (AoEC). It is expected that the obtained list include key genes which are critical for EPC function and survival and thus potential targets of EPC recognition in vivo and therapeutic modulation of vasculogenesis in cancer as well as other diseases, in which de novo vasculogenesis plays a crucial role. For instance, the list includes Syk and galectin-3, which encode protein tyrosine kinase and β-galactoside-binding protein, respectively, and are expressed higher in EPCs than the three control endothelial cells. In situ hybridization showed that the genes were expressed in isolated cells in the fetal liver at E11.5 and E14.5 of mouse development.  相似文献   

17.
Endothelial progenitor cells for regeneration   总被引:4,自引:0,他引:4  
Masuda H  Kalka C  Asahara T 《Human cell》2000,13(4):153-160
Endothelial progenitor cells (EPCs) have been recently isolated from peripheral blood and bone marrow (BM), and shown to be incorporated into sites of physiological and pathological neovascularization in vivo. In contrast to differentiated endothelial cells (ECs), transplantation of EPCs successfully enhanced vascular development by in situ differentiation and proliferation within ischemic organs. Based on such a novel concept of closed up function on EPCs in postnatal neovascularization, the beneficial property of EPC is attractive for cell therapy as well as cell-mediated gene therapy applications targeting regeneration of ischemic tissue.  相似文献   

18.
Recent clinical studies have suggested that endothelial progenitor cells (EPCs) transplantation provides a modest benefit for treatment of the ischaemic diseases such as limb ischaemia. However, cell‐based therapies have been limited by poor survival of the engrafted cells. This investigation was designed to establish optimal hypoxia preconditioning and evaluate effects of hypoxic preconditioning‐induced autophagy on survival of the engrafted EPCs. Autophagy of CD34+VEGFR‐2+ EPCs isolated from rat bone marrow increased after treatment with 1% O2. The number of the apoptotic cells in the hypoxic cells increased significantly after autophagy was inhibited with 3‐methyladenine. According to balance of autophagy and apoptosis, treatment with 1% O2 for 2 hrs was determined as optimal preconditioning for EPC transplantation. To examine survival of the hypoxic cells, the cells were implanted into the ischaemic pouch of the abdominal wall in rats. The number of the survived cells was greater in the hypoxic group. After the cells loaded with fibrin were transplanted with intramuscular injection, blood perfusion, arteriogenesis and angiogenesis in the ischaemic hindlimb were analysed with laser Doppler‐based perfusion measurement, angiogram and the density of the microvessels in histological sections, respectively. Repair of the ischaemic tissue was improved significantly in the hypoxic preconditioning group. Loading the cells with fibrin has cytoprotective effect on survival of the engrafted cells. These results suggest that activation of autophagy with hypoxic preconditioning is an optimizing strategy for EPC therapy of limb ischaemia.  相似文献   

19.
Endothelial progenitor cells (EPCs) play a capital role in angiogenesis via directly participating in neo‐vessel formation and secreting pro‐angiogenic factors. Stromal cell‐derived factor 1 (SDF‐1) and its receptor CXCR4 play a critical role in the retention and quiescence of EPCs within its niche in the bone marrow. Disturbing the interaction between SDF‐1 and CXCR4 is an effective strategy for EPC mobilization. We developed a novel CXCR4 antagonist P2G, a mutant protein of SDF‐1β with high antagonistic activity against CXCR4 and high potency in enhancing ischaemic angiogenesis and blood perfusion. However, its direct effects on ischaemic tissue remain largely unknown. In this study, P2G was found to possess a robust capability to promote EPC infiltration and incorporation in neo‐vessels, enhance the expression and function of pro‐angiogenic factors, such as SDF‐1, vascular endothelial growth factor and matrix metalloprotein‐9, and activate cell signals involved in angiogenesis, such as proliferating cell nuclear antigen, protein kinase B (Akt), extracellular regulated protein kinases and mammalian target of rapamycin, in ischaemic tissue. Moreover, P2G can attenuate fibrotic remodelling to facilitate the recovery of ischaemic tissue. The capability of P2G in direct augmenting ischaemic environment for angiogenesis suggests that it is a potential candidate for the therapy of ischaemia diseases.  相似文献   

20.
Angiogenesis is a regulated process involving the proliferation, migration, and remodeling of different cell types particularly mature endothelial and their progenitor cells, nominated as endothelial progenitor cells (EPCs). Tie2/Tek is a tyrosine kinase receptor expressed by endothelial cells that induces signal transduction pathways involved in endothelial biology. To address the potential importance of the various tyrosine residues of Tie2 in EPC development, we generated a series of Tie2 tyrosine mutated (Y1106F, Y1100F, and Y1111F) EPCs and then assess the biological features of these cells. Clonogenic, tubulogenic, proliferative, migratory, and functional properties of these cells were analyzed. Next, GFP-positive EPCs containing Tie2 tyrosine mutations were systemically transplanted into sublethaly irradiated mice to analyze the potency of these cells for marrow reconstitution. We found that mutation in the Tie2 tyrosine 1106 residue directed EPCs toward a mature endothelial phenotype, which was associated with augmented tubulogenic and migratory properties, and increased phosphorylation of the active site (tyrosine 992) as well as increased vascular perfusion in the in vivo Matrigel plug assay. Moreover, transplantation of 1106 Tie2 mutant EPCs failed to reconstitute the bone marrow after myeloablation, whereas transplantation of EPCs with the 1100 or 1111 Tie2 tyrosine mutation resulted in bone marrow engraftment, leading to improved survival of recipient mice. Our findings demonstrate that the tyrosine 1106 residue in Tie2 plays a key role to maintain the stemness features of EPCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号