首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
2.
Colorectal cancer (CRC) is one of the most common cancers worldwide, with high mortality. Abnormally expressed microRNAs (miRNAs) are considered novel biomarkers in cancer diagnosis. The aim of this study was to investigate the diagnostic value of miR‐92a‐1 in patients with CRC. Serum samples were collected from 148 patients pathologically diagnosed with CRC and 68 gender‐ and age‐matched healthy volunteers. Quantitative real‐time polymerase chain reaction (qRT‐PCR) was used to measure serum miR‐92a‐1 level. Relationship between miR‐92a‐1 and clinicopathological features of CRC cases was analysed via chi‐square test. Receiver operating characteristic (ROC) curve was plotted to estimate the diagnostic value of miR‐92a‐1 in CRC. Serum miR‐92a‐1 was significantly up‐regulated in CRC patients compared with healthy individuals (P < .001). Moreover, miR‐92a‐1 expression was correlated with TNM stage (P = .02), histological stage (P = .003), lymph node metastasis (P = .003) and distant metastasis (P < .001). ROC analysis showed that the area under the ROC curve (AUC) was 0.914, suggesting high diagnostic accuracy of miR‐92a‐1 in ROC. The optimal cut‐off value was 1.485, with a sensitivity of 81.8% and a specificity of 95.6%. MiR‐92a‐1 is increased in CRC patients and correlated with aggressive clinical characteristics. Serum miR‐92a‐1 may be a potential diagnostic biomarker for CRC.  相似文献   

3.
Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid that presents challenges in genome analyses and breeding. Wild potato species serve as a resource for the introgression of important agronomic traits into cultivated potato. One key species is Solanum chacoense and the diploid, inbred clone M6, which is self‐compatible and has desirable tuber market quality and disease resistance traits. Sequencing and assembly of the genome of the M6 clone of S. chacoense generated an assembly of 825 767 562 bp in 8260 scaffolds with an N50 scaffold size of 713 602 bp. Pseudomolecule construction anchored 508 Mb of the genome assembly into 12 chromosomes. Genome annotation yielded 49 124 high‐confidence gene models representing 37 740 genes. Comparative analyses of the M6 genome with six other Solanaceae species revealed a core set of 158 367 Solanaceae genes and 1897 genes unique to three potato species. Analysis of single nucleotide polymorphisms across the M6 genome revealed enhanced residual heterozygosity on chromosomes 4, 8 and 9 relative to the other chromosomes. Access to the M6 genome provides a resource for identification of key genes for important agronomic traits and aids in genome‐enabled development of inbred diploid potatoes with the potential to accelerate potato breeding.  相似文献   

4.
In nitrogen (N) fixing symbioses, host‐symbiont specificity, genetic variation in bacterial symbionts and environmental variation represent fundamental constraints on the ecology, evolution and practical uses of these interactions, but detailed information is lacking for many naturally occurring N‐fixers. This study examined phylogenetic host specificity of Frankia in field‐collected nodules of two Alnus species (A. tenuifolia and A. viridis) in interior Alaska and, for A. tenuifolia, distribution, diversity, spatial autocorrelation and correlation with specific soil factors of Frankia genotypes in nodules collected from replicated habitats representing endpoints of a primary sere. Frankia genotypes most commonly associated with each host belonged to different clades within the Alnus‐infective Frankia clade, and for A. tenuifolia, were divergent from previously described Frankia. A. tenuifolia nodules from early and late succession habitats harboured distinct Frankia assemblages. In early succession, a single genotype inhabited 71% of nodules with no discernable autocorrelation at any scale, while late succession Frankia were more diverse, differed widely among plants within a site and were significantly autocorrelated within and among plants. Early succession Frankia genotype occurrence was strongly correlated with carbon/nitrogen ratio in the mineral soil fraction, while in late succession, the most common genotypes were correlated with different soil variables. Our results suggest that phylogenetic specificity is a significant factor in the A. tenuifoliaFrankia interaction and that significant habitat‐based differentiation may exist among A. tenuifolia‐infective genotypes. This is consistent with our hypothesis that A. tenuifolia selects specific Frankia genotypes from early succession soils and that this choice is attenuated in late succession.  相似文献   

5.
6.
Spike mosses (Selaginellaceae) represent an ancient lineage of vascular plants in which some species have evolved desiccation tolerance (DT). A sister‐group contrast to reveal the metabolic basis of DT was conducted between a desiccation‐tolerant species, Selaginella lepidophylla, and a desiccation‐sensitive species, Selaginella moellendorffii, at 100% relative water content (RWC) and 50% RWC using non‐biased, global metabolomics profiling technology, based on GC/MS and UHLC/MS/MS2 platforms. A total of 301 metabolites, including 170 named (56.5%) and 131 (43.5%) unnamed compounds, were characterized across both species. S. lepidophylla retained significantly higher abundances of sucrose, mono‐ and polysaccharides, and sugar alcohols than did S. moellendorffii. Aromatic amino acids, the well‐known osmoprotectant betaine and flavonoids were also more abundant in S. lepidophylla. Notably, levels of γ‐glutamyl amino acid, linked with glutathione metabolism in the detoxification of reactive oxygen species, and with possible nitrogen remobilization following rehydration, were markedly higher in S. lepidophylla. Markers for lipoxygenase activity were also greater in S. lepidophylla, especially at 50% RWC. S. moellendorffii contained more than twice the number of unnamed compounds, with only a slightly greater abundance than in S. lepidophylla. In contrast, S. lepidophylla contained 14 unnamed compounds of fivefold or greater abundance than in S. moellendorffii, suggesting that these compounds might play critical roles in DT. Overall, S. lepidophylla appears poised to tolerate desiccation in a constitutive manner using a wide range of metabolites with some inducible components, whereas S. moellendorffii mounts only limited metabolic responses to dehydration stress.  相似文献   

7.
Recombination breaks up ancestral linkage disequilibrium, creates combinations of alleles, affects the efficiency of natural selection, and plays a major role in crop domestication and improvement. However, there is little knowledge regarding the variation in the population‐scaled recombination rate in cotton. We constructed recombination maps and characterized the difference in the genomic landscape of the population‐scaled recombination rate between Gossypium hirsutum and G. arboreum and sub‐genomes based on the 381 sequenced G. hirsutum and 215 G. arboreum accessions. Comparative genomics identified large structural variations and syntenic genes in the recombination regions, suggesting that recombination was related to structural variation and occurred preferentially in the distal chromosomal regions. Correlation analysis indicated that recombination was only slightly affected by geographical distribution and breeding period. A genome‐wide association study (GWAS) was performed with 15 agronomic traits using 267 cotton accessions and identified 163 quantitative trait loci (QTL) and an important candidate gene (Ghir_COL2) for early maturity traits. Comparative analysis of recombination and a GWAS revealed that the QTL of fibre quality traits tended to be more common in high‐recombination regions than were those of yield and early maturity traits. These results provide insights into the population‐scaled recombination landscape, suggesting that recombination contributed to the domestication and improvement of cotton, which provides a useful reference for studying recombination in other species.  相似文献   

8.
Ecotypic variation among populations may become associated with widespread genomic differentiation, but theory predicts that this should happen only under particular conditions of gene flow, selection and population size. In closely related species, we might expect the strength of host‐associated genomic differentiation (HAD) to be correlated with the degree of phenotypic differentiation in host‐adaptive traits. Using microsatellite and Amplified Fragment Length Polymorphism (AFLP) markers, and controlling for isolation by distance between populations, we sought HAD in two congeneric species of butterflies with different degrees of host plant specialization. Prior work on Euphydryas editha had shown strong interpopulation differentiation in host‐adapted traits, resulting in incipient reproductive isolation among host‐associated ecotypes. We show here that Euphydryas aurinia had much weaker host‐associated phenotypic differentiation. Contrary to our expectations, we detected HAD in Euphydryas aurinia, but not in E. editha. Even within an E. aurinia population that fed on both hosts, we found weak but significant sympatric HAD that persisted in samples taken 9 years apart. The finding of significantly stronger HAD in the system with less phenotypic differentiation may seem paradoxical. Our findings can be explained by multiple factors, ranging from differences in dispersal or effective population size, to spatial variation in genomic or phenotypic traits and to structure induced by past histories of host‐adapted populations. Other infrequently measured factors, such as differences in recombination rates, may also play a role. Our result adds to recent work as a further caution against assumptions of simple relationships between genomic and adaptive phenotypic differentiation.  相似文献   

9.
Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi‐winter oilseed rape cultivar ‘ZS11’ and its comprehensive genomic comparison with the genomes of the winter‐type cultivar ‘Darmor‐bzh’ as well as two progenitors. The integrated BAC‐to‐BAC and whole‐genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high‐quality genome assembly of B. napus ‘ZS11’. Within a short evolutionary period (~6700 years ago), semi‐winter‐type ‘ZS11’ and the winter‐type ‘Darmor‐bzh’ maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to ‘Darmor‐bzh’, both two subgenomes of ‘ZS11’ are closely related to its progenitors, and the ‘ZS11’ genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi‐winter‐type ‘ZS11’ underwent potential genomic introgressions with B. rapa (Ar). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization‐responsive flowering time in ‘ZS11’ was first experienced HE, and then underwent genomic introgression event with Ar, which potentially has led to genetic differences in controlling vernalization in the semi‐winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi‐winter oilseed rape in Asia.  相似文献   

10.
Plant metabolomics is essentially the comprehensive analysis of complex metabolites of plant extracts. Metabolic fingerprinting is an important part of plant metabolomics research. In this study, metabolic fingerprinting of different stages of the life history of the red alga Porphyra haitanensis was performed. The stages included conchocelis filaments, sporangial branchlets, conchosporangia, discharged conchospores and conchosporangial branchlets after conchospore discharge. Metabolite extracts were analysed with ultra‐performance liquid chromatography coupled with electrospray ionisation quadrupole‐time of flight mass spectrometry. Analyses profiles were subjected to principal components analysis and orthogonal projection to latent structures discriminant analysis using the SIMCA‐P software for biomarker selection and identification. Based on the MS/MS spectra and data from the literature, potential biomarkers, mainly of phosphatidylcholine and lysophosphatidylcholine, were identified. Identification of these biomarkers suggested that plasma membrane phospholipids underwent major changes during the life history of Phaitanensis. The levels of phosphatidylcholine and lysophosphatidylcholine increased in sporangial branchlets and decreased in discharged conchospores. Moreover, levels of sphingaine (d18:0) decreased in sporangial branchlets and increased in discharged conchospores, which indicates that membrane lipids were increasingly synthesised as energy storage in sporangial branchlets, while energy was consumed in sporangial branchlets to discharged conchospores. A metabolomic study of different growth phases of Phaitanensis will enhance our understanding of its physiology and ecology.  相似文献   

11.
Red rice contains high levels of proanthocyanidins and anthocyanins, which have been recognized as health‐promoting nutrients. The red coloration of rice grains is controlled by two complementary genes, Rc and Rd. The RcRd genotype produces red pericarp in wild species Oryza rufipogon, whereas most cultivated rice varieties produce white grains resulted from a 14‐bp frame‐shift deletion in the seventh exon of the Rc gene. In the present study, we developed a CRISPR/Cas9‐mediated method to functionally restore the recessive rc allele through reverting the 14‐bp frame‐shift deletion to in‐frame mutations in which the deletions were in multiples of three bases, and successfully converted three elite white pericarp rice varieties into red ones. Rice seeds from T1 in‐frame Rc lines were measured for proanthocyanidins and anthocyanidins, and high accumulation levels of proanthocyanidins and anthocyanidins were observed in red grains from the mutants. Moreover, there was no significant difference between wild‐type and in‐frame Rc mutants in major agronomic traits, indicating that restoration of Rc function had no negative effect on important agronomic traits in rice. Given that most white pericarp rice varieties are resulted from the 14‐bp deletion in Rc, it is conceivable that our method could be applied to most white pericarp rice varieties and would greatly accelerate the breeding of new red rice varieties with elite agronomic traits. In addition, our study demonstrates an effective approach to restore recessive frame‐shift alleles for crop improvement.  相似文献   

12.
This study was aimed to explore the correlation of intercellular adhesion molecule‐1 (ICAM‐1) K469E and megakaryoblastic leukaemia factor‐1 (MKL‐1) ?184C/T polymorphisms with the susceptibility to coronary heart disease (CHD) in the Chinese Han population. 100 CHD patients and 91 healthy people that had no blood connection with each other were enrolled in this case‐control study. ICAM‐1 and MKL‐1 polymorphisms were genotyped by polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) approach. Multiple logistic regression was used to analyse the correlation between polymorphisms of ICAM‐1 and MKL‐1 and CHD susceptibility. Differences of genotype and allele frequencies of the two SNPs between case and control groups were analysed by chi‐square test. Odds ratios (ORs) and 95% confidence intervals (CIs) were indicated relative susceptibility of CHD. The distributions of ICAM‐1 and MKL‐1 polymorphisms in each group conformed to Hardy‐Weinberg equilibrium (HWE). After adjusting for traditional risk factors, the TT genotype frequency of MKL‐1 ?184C/T polymorphism was found significantly higher in case group than in control group (P < .05). Meanwhile, T allele frequency increased in case group compared with control group, and the differences had statistical significance (P = .04, OR = 2.34, 95% CI = 1.34‐5.26). Logistic regression analysis in this study proved that smoking, hypertension, diabetes and triglyceride (TG) were all risk factors for CHD ICAM‐1 K469E polymorphism has no association with the onset of CHD. But MKL‐1 ?184C/T polymorphism is associated with the risk of CHD and T allele might be a susceptibility factor for CHD.  相似文献   

13.
14.
Die‐back disease caused by Phomopsis (Diaporthe) azadirachtae is the devastating disease of Azadirachta indica. Accurate identification of P. azadirachtae is always problematic due to morphological plasticity and delayed appearance of conidia. A species‐specific PCR‐based assay was developed for rapid and reliable identification of P. azadirachtae by designing a species‐specific primer‐targeting ITS region of P. azadirachtae isolates. The assay was validated with DNA isolated from different Phomopsis species and other fungal isolates. The PCR assay amplified 313‐bp product from all the isolates of P. azadirachtae and not from any other Phomopsis species or any genera indicating its specificity. The assay successfully detected the pathogen DNA in naturally and artificially infected neem seeds and twigs indicating its applicability in seed quarantine and seed health testing. The sensitivity of the assay was 100 fg when genomic DNA of all isolates was analysed. The PCR‐based assay was 92% effective in comparison with seed plating technique in detecting the pathogen. This is the first report on the development of species‐specific PCR assay for identification and detection of P. azadirachtae. Thus, PCR‐based assay developed is very specific, rapid, confirmatory and sensitive tool for detection of pathogen P. azadirachtae at early stages.  相似文献   

15.
The identification of genetic markers linked to genes of agronomic importance is a major aim of crop research and breeding programmes. Here, we identify markers for Yr15, a major disease resistance gene for wheat yellow rust, using a segregating F2 population. After phenotyping, we implemented RNA sequencing (RNA‐Seq) of bulked pools to identify single‐nucleotide polymorphisms (SNP) associated with Yr15. Over 27 000 genes with SNPs were identified between the parents, and then classified based on the results from the sequenced bulks. We calculated the bulk frequency ratio (BFR) of SNPs between resistant and susceptible bulks, selecting those showing sixfold enrichment/depletion in the corresponding bulks (BFR > 6). Using additional filtering criteria, we reduced the number of genes with a putative SNP to 175. The 35 SNPs with the highest BFR values were converted into genome‐specific KASP assays using an automated bioinformatics pipeline (PolyMarker) which circumvents the limitations associated with the polyploid wheat genome. Twenty‐eight assays were polymorphic of which 22 (63%) mapped in the same linkage group as Yr15. Using these markers, we mapped Yr15 to a 0.77‐cM interval. The three most closely linked SNPs were tested across varieties and breeding lines representing UK elite germplasm. Two flanking markers were diagnostic in over 99% of lines tested, thus providing a reliable haplotype for marker‐assisted selection in these breeding programmes. Our results demonstrate that the proposed methodology can be applied in polyploid F2 populations to generate high‐resolution genetic maps across target intervals.  相似文献   

16.
Multi‐parent advanced generation inter‐cross (MAGIC) populations are an emerging type of resource for dissecting the genetic structure of traits and improving breeding populations. We developed a MAGIC population for cowpea (Vigna unguiculata L. Walp.) from eight founder parents. These founders were genetically diverse and carried many abiotic and biotic stress resistance, seed quality and agronomic traits relevant to cowpea improvement in the United States and sub‐Saharan Africa, where cowpea is vitally important in the human diet and local economies. The eight parents were inter‐crossed using structured matings to ensure that the population would have balanced representation from each parent, followed by single‐seed descent, resulting in 305 F8 recombinant inbred lines each carrying a mosaic of genome blocks contributed by all founders. This was confirmed by single nucleotide polymorphism genotyping with the Illumina Cowpea Consortium Array. These lines were on average 99.74% homozygous but also diverse in agronomic traits across environments. Quantitative trait loci (QTLs) were identified for several parental traits. Loci with major effects on photoperiod sensitivity and seed size were also verified by biparental genetic mapping. The recombination events were concentrated in telomeric regions. Due to its broad genetic base, this cowpea MAGIC population promises breakthroughs in genetic gain, QTL and gene discovery, enhancement of breeding populations and, for some lines, direct releases as new varieties.  相似文献   

17.
In this work, a comprehensive study on the chemical constituents of the aerial parts of Rosmarinus eriocalyx (Lamiaceae), an aromatic shrub traditionally consumed as a food and herbal remedy in Algeria, is presented. The aroma profile was analysed by headspace solid phase microextraction (HS‐SPME) coupled with gas chromatography‐mass spectrometry (GC/MS), whereas the crude extract constituents were analyzed by 1H‐NMR and by high performance liquid chromatography coupled with mass spectrometry (HPLC/MSn). Thirty‐nine volatile compounds, most of them being monoterpenes, have been identified, with camphor, camphene, and α‐pinene as the most abundant constituents. 1H‐NMR analysis revealed the presence of phenolic compounds and betulinic acid while HPLC/MSn allowed the identification of glycosilated and aglyconic flavonoids as well as phenylpropanoid derivatives. Some of these constituents, namely as betulinic acid, rosmanol, and cirsimaritin were reported for the first time in Reriocalyx.  相似文献   

18.
Flowering time is an important factor affecting grain yield in wheat. In this study, we divided reproductive spike development into eight sub‐phases. These sub‐phases have the potential to be delicately manipulated to increase grain yield. We measured 36 traits with regard to sub‐phase durations, determined three grain yield‐related traits in eight field environments and mapped 15 696 single nucleotide polymorphism (SNP, based on 90k Infinium chip and 35k Affymetrix chip) markers in 210 wheat genotypes. Phenotypic and genetic associations between grain yield traits and sub‐phase durations showed significant consistency (Mantel test; = 0.5377, < 0.001). The shared quantitative trait loci (QTLs) revealed by the genome‐wide association study suggested a close association between grain yield and sub‐phase duration, which may be attributed to effects on spikelet initiation/spikelet number (double ridge to terminal spikelet stage, DR‐TS) and assimilate accumulation (green anther to anthesis stage, GA‐AN). Moreover, we observed that the photoperiod‐sensitivity allele at the Ppd‐D1 locus on chromosome 2D markedly extended all sub‐phase durations, which may contribute to its positive effects on grain yield traits. The dwarfing allele at the Rht‐D1 (chromosome 4D) locus altered the sub‐phase duration and displayed positive effects on grain yield traits. Data for 30 selected genotypes (from among the original 210 genotypes) in the field displayed a close association with that from the greenhouse. Most importantly, this study demonstrated specific connections to grain yield in narrower time windows (i.e. the eight sub‐phases), rather than the entire stem elongation phase as a whole.  相似文献   

19.
Four new 13,14‐seco‐withanolides, minisecolides A – D ( 1  –  4 ), together with three known analogues 5  –  7 , were isolated from the whole plants of Physalis minima. The structures of new compounds were determined on the basis of spectroscopic analysis, including 1H‐, 13C‐NMR, 2D‐NMR (HMBC, HSQC, ROESY), and HR‐ESI‐MS. Evaluation of all isolates for their inhibitory effects on nitric oxide (NO) production was conducted on lipopolysaccaride‐activated RAW264.7 macrophages. Compounds 2 , 3 , 5 , and 6 showed inhibitory activities, especially for compound 5 with IC50 value of 3.87 μm .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号