首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Dudu Wu  Zhi Chen 《Luminescence》2015,30(8):1212-1218
The interaction between ginsenoside Rh2 (G‐Rh2) and calf thymus DNA (ctDNA) was investigated by spectroscopic methods including UV–vis absorption, fluorescence and circular dichroism (CD) spectroscopy, coupled with DNA melting techniques and viscosity measurements. Stern–Volmer plots at different temperatures proved that the quenching mechanism was a static quenching procedure. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated to be –22.83 KJ · mol–1and 15.11 J · mol–1 · K–1by van ’t Hoff equation, suggesting that hydrophobic force might play a major role in the binding of G‐Rh2 to ctDNA. Moreover, the fluorescence quenching study with potassium iodide as quencher indicated that the KSV (Stern–Volmer quenching constant) value for the bound G‐Rh2 with ctDNA was lower than the free G‐Rh2. The relative viscosity of ctDNA increased with the addition of G‐Rh2 and also the ctDNA melting temperature increased in the presence of G‐Rh2. Denatured DNA studies showed that quenching by single‐stranded DNA was less than that by double‐stranded DNA. The observed changes in CD spectra also demonstrated that the intensities of the positive and negative bands decreased with the addition of G‐Rh2. The experimental results suggest that G‐Rh2 molecules bind to ctDNA via an intercalative binding mode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The interaction of paylean (PL) with calf thymus DNA (ctDNA) was investigated using fluorescence spectroscopy, UV absorption, melting studies, ionic strength, viscosity experiments and molecular docking under simulated physiological conditions. Values for the binding constant Ka between PL and DNA were 5.11 × 103, 2.74 × 103 and 1.74 × 103 L mol–1 at 19, 29 and 39°C respectively. DNA quenched the intrinsic fluorescence of PL via a static quenching procedure as shown from Stern–Volmer plots. The relative viscosity and the melting temperature of DNA were basically unchanged in the presence of PL. The fluorescence intensity of PL–DNA decreased with increasing ionic strength. The value of Ka for PL with double‐stranded DNA (dsDNA) was larger than that for PL with single‐stranded DNA (ssDNA). All the results revealed that the binding mode was groove binding, and molecular docking further indicated that PL was preferentially bonded to A–T‐rich regions of DNA. The values for ΔH, ΔS and ΔG suggested that van der Waals forces or hydrogen bonding might be the main acting forces between PL and DNA. The binding distance was determined to be 3.37 nm based on the theory of Förster energy transference, which indicated that a non‐radiation energy transfer process occurred. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

In this paper, we have studied the in vitro binding of neotame (NTM), an artificial sweetener, with native calf thymus DNA using different methods including spectrophotometric, spectrofluorometric, competition experiment, circular dichroism (CD), and viscosimetric techniques. From the spectrophotometric studies, the binding constant (Kb) of NTM-DNA was calculated to be 2?×?103 M?1. The quenching of the intrinsic fluorescence of NTM in the presence of DNA at different temperatures was also used to calculate binding constants (Kb) as well as corresponding number of binding sites (n). Moreover, the obtained results indicated that the quenching mechanism involves static quenching. By comparing the competitive fluorimetric studies with Hoechst 33258, as a known groove probe, and methylene blue, as a known intercalation probe, and iodide quenching experiments it was revealed that NTM strongly binds in the grooves of the DNA helix, which was further confirmed by CD and viscosimetric studies. In addition, a molecular docking method was employed to further investigate the binding interactions between NTM and DNA, and confirm the obtained results.  相似文献   

4.
Donepezil (DNP) is one of approved drugs to treat Alzheimer's disease (AD). However, the potential effect of DNP on DNA is still unclear. Therefore, the interaction of DNP with calf thymus DNA (DNA) was studied in vitro using spectroscopic and molecular docking methods. Steady‐state and transient fluorescence experiments showed that there was a clear binding interaction between DNP and DNA, resulting from DNP fluorescence being quenched using DNA. DNP and DNA have one binding site between them, and the binding constant (Kb) was 0.78 × 104 L·mol?1 at 298 K. In this binding process, hydrophobic force was the main interaction force, because enthalpy change (ΔH) and entropy change (ΔS) of DNP–DNA were 67.92 kJ·mol?1 and 302.96 J·mol?1·K?1, respectively. DNP bound to DNA in a groove‐binding mode, which was verified using a competition displacement study and other typical spectroscopic methods. Fourier transform infrared (FTIR) spectrum results showed that DNP interacted with guanine (G) and cytosine (C) bases of DNA. The molecular docking results further supported the results of spectroscopic experiments, and suggested that both Pi‐Sigma force and Pi‐Alkyl force were the major hydrophobic force functioning between DNP and DNA.  相似文献   

5.
The binding interaction of lovastatin with calf thymus DNA (ct‐DNA) was studied using UV/Vis absorption spectroscopy, fluorescence emission spectroscopy, circular dichroism (CD), viscosity measurement and molecular docking methods. The experimental results showed that there was an obvious binding interaction of lovastatin with ct‐DNA and the binding constant (Kb) was 5.60 × 103 M–1 at 298 K. In the binding process of lovastatin with ct‐DNA, the enthalpy change (ΔH0) and entropy change (ΔS0) were –24.9 kJ/mol and –12.0 J/mol/K, respectively, indicating that the main binding interaction forces were van der Waal's force and hydrogen bonding. The molecular docking results suggested that lovastatin preferred to bind on the minor groove of different B‐DNA fragments and the conformation change of lovastatin in the lovastatin–DNA complex was obviously observed, implying that the flexibility of lovastatin molecule plays an important role in the formation of the stable lovastatin–ct‐DNA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

In this study, the interaction of Holmium (Ho) complex including 2, 9-dimethyl-1,10-phenanthroline, also called Neocuproine (Neo), [Ho(Neo)2Cl3.H2O], as fluorescence probe with fish-salmon DNA (FS-DNA) is studied during experimental investigations. Multi-spectroscopic methods are utilized to determine the affinity binding constants (Kb) of complex–FS-DNA. It is found that fluorescence of Ho complex is strongly quenched by the FS-DNA through a static quenching procedure. Under optimal conditions in Tris(trishydroxymethyl-aminomethane)–HCl buffer at 25?°C with pH?≈?7.2, intrinsic binding constant Kb of Ho complex is 6.12?±?0.04?×?105 M?1. Also, the binding site number and Stern–Volmer quenching constant are calculated. There are different approaches, including iodide quenching assay, salt effect and thermodynamical assessment to determine the features of the binding mode between Ho complex and FS-DNA. Also, the parent and starch and lipid nanoencapsulated Ho complex, as potent antitumor candidates, were synthesized. The main structure of Ho complex is maintained after encapsulation using starch and lipid nanoparticles. 3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method was used to assess the anticancer properties of Ho complex and its encapsulated forms on human cancer cell lines of human lung carcinoma cell line and breast cancer cell line. In conclusion, these compounds could be considered as new antitumor candidates.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
The interaction of naringenin (Nar) and its neohesperidoside, naringin (Narn), with calf thymus deoxyribonucleic acid (ctDNA) in the absence and the presence of β-cyclodextrin (β-CD) was investigated. The interaction of Nar and Narn with β-CD/ctDNA was analyzed by using absorption, fluorescence, and molecular modeling techniques. Docking studies showed the existence of hydrogen bonding, electrostatic and phobic interaction of Nar and Narn with β-CD/DNA. 1:2 stoichiometric inclusion complexes were observed for Nar and Narn with β-CD. With the addition of ctDNA, Nar and Narn resulted into the fluorescence quenching phenomenon in the aqueous solution and β-CD solution. The binding constant K b and the number of binding sites were found to be different for Nar and Narn bindings with DNA in aqueous and β-CD solution. The difference is attributed to the structural difference between Nar and Narn with neohesperidoside moiety present in Narn.  相似文献   

8.
The interaction of trypsin with tetramethylpyrazine (TMP) and ferulic acid (FA) was studied using fluorescence, synchronous fluorescence, UV–vis absorption, circular dichroism (CD) and three‐dimensional (3D) fluorescence spectra techniques. Using fluorescence quenching calculations, the bimolecular quenching constant (kq), apparent quenching constant (KSV), effective binding constant (Ka) and binding site number (n) were obtained. The distance r between donor and acceptor was found to be 2.049 and 1.281 nm for TMP–trypsin and FA–trypsin complexes. TMP and FA can quench the fluorescence intensity of trypsin by a static quenching procedure. Thermodynamic parameters calculated on the basis of different temperatures revealed that the binding of trypsin to TMP/FA mainly depended on van der Waals' forces and hydrogen bonds. The effect of TMP and FA on the conformation of trypsin was analyzed using synchronous fluorescence, CD, 3D fluorescence spectra and molecular docking studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The interaction between strictosamide (STM) and human serum albumin (HSA) was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three‐dimensional fluorescence spectroscopy, ultraviolet‐visible absorption spectroscopy, circular dichroism spectroscopy and molecular modeling under physiological pH 7.4. STM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding site number n and apparent binding constant Ka were determined at different temperatures by fluorescence quenching. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated as ?3.01 kJ/mol and 77.75 J/mol per K, respectively, which suggested that the hydrophobic force played major roles in stabilizing the HSA–STM complex. The distance r between donor and acceptor was obtained to be 4.10 nm according to Förster's theory. After the addition of STM, the synchronous fluorescence and three‐dimensional fluorescence spectral results showed that the hydrophobicity of amino acid residues increased and the circular dichroism spectral results showed that the α‐helix content of HSA decreased (from 61.48% to 57.73%). These revealed that the microenvironment and conformation of HSA were changed in the binding reaction. Furthermore, the study of molecular modeling indicated that STM could bind to site I of HSA and the hydrophobic interaction was the major acting force, which was in agreement with the binding mode study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Interactions of sulfadiazine sodium (SD‐Na) with calf thymus DNA (ctDNA) and human serum albumin (HSA) were studied using fluorescence spectroscopy, UV absorption spectroscopy and molecular modeling. The fluorescence experiments showed that the processes were static quenching. The results of UV spectra and molecular modeling of the interaction between SD‐Na and ctDNA indicated that the binding mode might be groove binding. In addition, the interaction of SD‐Na with HSA under simulative physiological conditions was also investigated. The binding constants (K) and the number of binding sites (n) at different temperatures (292, 302, 312 K) were 5.23 × 103 L/mol, 2.18; 4.50 × 103 L/mol, 2.35; and 4.08 × 103 L/mol, 2.47, respectively. Thermodynamic parameters including enthalpy change (ΔH) and entropy change (ΔS) were calculated, the results suggesting that hydrophobic force played a very important role in SD‐Na binding to HSA, which was in good agreement with the molecular modeling study. Moreover, the effect of SD‐Na on the conformation of HSA was analyzed using three‐dimensional fluorescence spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
DNA-binding properties of an antiviral drug, valganciclovir (valcyte) was studied by using emission, absorption, circular dichroism, viscosity, differential pulse voltammetry, fluorescence techniques, and computational studies. The drug bound to calf thymus DNA (ct-DNA) in a groove-binding mode. The calculated binding constant of UV-vis, Ka, is comparable to groove-binding drugs. Competitive fluorimetric studies with Hoechst 33258 showed that valcyte could displace the DNA-bound Hoechst 33258. The drug could not displace intercalated methylene blue from DNA double helix. Furthermore, the induced detectable changes in the CD spectrum of ct-DNA as well as changes in its viscosity confirm the groove-binding mode. In addition, an integrated molecular docking was employed to further investigate the binding interactions between valcyte and calf thymus DNA.  相似文献   

12.
The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non‐fluorescent CF–CFA and CF–CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 104 and 1.04 × 104 L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

With the aim of evaluating interaction between double‐stranded calf thymus (ds)DNA and sulphur containing fused planar rings, the derivatives of 1,8‐naphthyridine containing thiono groups were synthesized by the condensation of 2‐mercapto‐3‐formyl[1,8]naphthyridines using 1‐chloroacetone, 2‐chloroacetamide, chloroaceticacid, and 2‐chloro‐1‐phenylethanone in the presence of anhydrous potassium carbonate as s catalyst under solvent free microwave irradiation. The structures of the compounds were elucidated on the basis of elemental analysis, IR, 1H NMR, and mass spectra. The interaction of thieno[2,3‐b]‐1,8‐naphthyridine‐2‐carboxylic acid (TNC) (3a) with ct‐DNA was studied by UV‐Vis spectrophotometry, viscosity, thermal denaturation, as well as cyclic voltammetry experiments. On binding to DNA, the absorption spectrum underwent bathochromic and hypochromic shifts. Binding parameters, determined from spectrophotometric measurements indicated a binding constant of K b =2.1×106 M?1. The thieno[2,3‐b]‐1,8‐naphthyridine‐2‐carboxylic acid (3a) increases the viscosity of sonicated rod‐like DNA fragments. The binding of TNC to DNA increased the melting temperature by about 4°C. The decrease in peak current heights and shifts of peak potential values are observed by the addition of calf thymus DNA in cyclic voltammetry studies.  相似文献   

14.
The interaction between the dimer structure of ibuprofen drug (D-IB) and calf thymus DNA under simulative physiological conditions was investigated with the use of Hoechst 33258 and methylene blue dye as spectral probes by the methods of UV-visible absorption, fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling study.Using the Job's plot, a single class of binding sites for theD-IB on DNA was put in evidence. The Stern–Volmer analysis of fluorescence quenching data shows the presence of both the static and dynamic quenching mechanisms. The binding constants, Kb were calculated at different temperatures, and the thermodynamic parameters ?G°, ?H° and ?S° were given. The experimental results showed that D-IB molecules could bind with DNA via groove binding mode as evidenced by: I. DNA binding constant from spectrophotometric studies of the interaction of D-IB with DNA is comparable to groove binding drugs. II. Competitive fluorimetric studies with Hoechst 33258 have shown that D-IB exhibits the ability of this complex to displace with DNA-bounded Hoechst, indicating that it binds to DNA in strong competition with Hoechst for the groove binding. III. There is no significantly change in the absorption of the MB-DNA system upon adding the D-IB, indicates that MB molecules are not released from the DNA helix after addition of the D-IB and are indicative of a non-intercalative mode of binding. IV. Small changes in DNA viscosity in the presence of D-IB, indicating weak link to DNA, which is consistent with DNA groove binding. As well as, induced CD spectral changes, and the docking results revealed that groove mechanism is followed by D-IB to bind with DNA.  相似文献   

15.
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi‐spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, Kb, value was found to lie between 2.69 × 103 and 9.55 × 103 M?1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub‐domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH0) and entropy change (ΔS0) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril‐BSA interaction, and 8‐anilino‐1‐naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3‐dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction.  相似文献   

16.
Novel palladium(II) complexes ( 7a–7e ) of substituted quinoline derivatives were synthesized. The complexes were characterized using various techniques such as thermogravimetric analysis (TGA), elemental analysis, conductance measurement, mass, absorption, infra‐red (IR), 1H NMR, 13C NMR and energy‐dispersive X‐ray spectroscopy (EDX). Complexes for herring sperm DNA (HS DNA) binding were explored and absorption titration and the binding constant (Kb) as well as Gibb's free energy were evaluated. Complex 7d exhibited the highest binding constant, therefore the thermodynamic parameters of 7d at different temperatures were evaluated. To support the results of the absorption titration, fluorescence titration, viscosity measurement and molecular docking studies were performed. The fluorescence quenching data as evaluated from Stern–Volmer equation were used to calculate KSV, Kf and the number of binding sites. The results of all these studies were in good agreement with the absorption study. DNA electrophoretic mobility was performed to explore the possible application of metal complexes as artificial metallonucleases. The antibacterial activity of the complexes was accessed against different pathogenic bacteria and cytotoxicity was measured using brine shrimp and S. pombe.  相似文献   

17.
Eight rare earth metal(II) complexes with quercetin ML3 x 6H2O [L=quercetin (3-OH group deprotonated); M = La, Nd, Eu, Gd, Tb, Dy, Tm and Y] have been synthesized and characterized by elemental analysis, complexometric titration, thermal analysis, conductivity, IR, UV, 1HNMR and fluorescence spectra techniques as well as cyclic voltammetry. The quercetin:metal stoichiometry and the equilibrium stability constant for metal binding to quercetin have been determined. The antioxidative and antitumor activities of quercetin x 2H2O and the complexes were tested by both the MTT and SRB methods. The results show that the suppression ratio of the complexes against the tested tumour cells are superior to quercetin x 2H2O. The property of LaL3 x 6H2O reacting with calf thymus DNA was studied by fluorescence methods. The La-complex binding to DNA has been determined by fluorescence titration in 0.05 M Tris-HCl, 0.5 M NaCl buffer (pH 7.0). The results indicate that the interaction of the complex with DNA is very evident.  相似文献   

18.
The interaction between fleroxacin (FLX) and pepsin was investigated by spectrofluorimetry. The effects of FLX on pepsin showed that the microenvironment of tryptophan residues and molecular conformation of pepsin were changed based on fluorescence quenching and synchronous fluorescence spectroscopy in combination with three‐dimensional fluorescence spectroscopy. Static quenching was suggested and it was proved that the fluorescence quenching of pepsin by FLX was related to the formation of a new complex and a non‐radiation energy transfer. The quenching constants KSV, binding constants K and binding sites n were calculated at different temperatures. The molecular interaction distance (r = 6.71) and energy transfer efficiency (E = 0.216) between pepsin and FLX were obtained according to the Forster mechanism of non‐radiation energy transfer. Hydrophobic and electrostatic interaction played a major role in FLX–pepsin association. In addition, the hydrophobic interaction and binding free energy were further tested by molecular modeling study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Dudu Wu  Zhi Chen 《Luminescence》2014,29(4):307-313
Water‐soluble ZnS quantum dots (QDs) modified by mercaptoacetic acid (MPA) were used to determinate quercetin in aqueous solutions by a fluorescence spectroscopic technique. The results showed that the fluorescence of the modified ZnS QDs could be quenched by quercetin effectively in physiological buffer solution. The optimum fluorescence intensity was found to be at incubation time 10 min, pH 7.0 and temperature 25°C. Under the optimal conditions, the detection limit of quercetin was 5.71 × 10‐7 mol/L. Moreover, the quenching mechanism was discussed to be a static quenching procedure, which was proved by the quenching rate constant Kq (1.14 × 1013 L/mol/s). Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The interaction between the photosensitive antitumour drug, 2(3),9(10),16(17),23(24)‐tetra‐(((2‐aminoethylamino)methyl)phenoxy)phthalocyaninato‐zinc(II) (ZnPc) and bovine serum albumin (BSA) has been investigated using various spectroscopic methods. This work may provide some useful information for understanding the interaction mechanism of anticancer drug–albumin binding and gain insight into the biological activity and metabolism of the drug in blood. Based on analysis of the fluorescence spectra, ZnPc could quench the intrinsic fluorescence of BSA and the quenching mechanism was static by forming a ground state complex. Meanwhile, the Stern–Volmer quenching constant (KSV), binding constant (Kb), number of binding sites (n) and thermodynamic parameters were obtained. Results showed that the interaction of ZnPc with BSA occurred spontaneously via hydrogen bond and van der Waal's force. According to Foster's non‐radioactive energy transfer theory, the energy transfer from BSA to ZnPc occurred with high possibility. Synchronous fluorescence and circular dichroism (CD) spectra also demonstrated that ZnPc induced the secondary structure of and conformation changes in BSA, especially α helix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号