首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A collection of 4-(4-morpholinophenyl)-6-aryl-6H-1,3-thiazin-2-amines (20–28) were synthesized and their in vitro antimicrobial activity was investigated. Compound 21 against P. aeruginosa, 23 against B. subtilis, 24 against V. cholerae and P. aeruginosa, 26 against S. aureus and B. subtilis, 27 against B. subtilis and E. coli, and 28 against all tested bacterial strains exerted excellent antibacterial activity. Compound 20 against A. flavus and Rhizopus, 21, 26 against Rhizopus, 22, 27 against Mucor, 23 against A. flavus, 24 against both A. flavus and Mucor, 25 against all tested strains, and 28 against Rhizopus and M. gypseum exerted excellent antifungal activity.  相似文献   

2.
Herein, we report synthesis, characterization, antimicrobial and antimalarial activities of azines Schiff base ligands (L1−L4) and their palladium (II) complexes ( C1−C4 ) of [Pd(L)(OAc)2] type. The azine ligands (L1−L4) were prepared by condensation of carbonyl compounds with hydrazine hydrate and their complexes by the reaction of palladium acetate with L1−L4 ligands in 1 : 1 molar ratio. The prepared ligands and their complexes were characterized by spectral characterization using 1H &13C-NMR, FT-IR and mass spectral studies, which revealed that the ligands coordinates via azomethine nitrogen and heteroatom or aryl carbon with palladium. Moreover, Schiff bases and their palladium (II) complexes have been screened for their antibacterial (S. aureus, B. subtillis, and S. typhi, P. aeruginosa), antifungal (C. albicans, A. niger, and A. clavatus) and antimalarial (P. falciparum) activities. The Schiff base L4 showed good results for antibacterial against S. aureus (MIC, 50 μg/mL) and antimalarial against P. falciparum (IC50, 0.83 μg/mL). The complex C1 showed best antibacterial activity (MIC, 62.5 μg/mL) against S. typhi and the complex C4 exhibited remarkable antimalarial activity (IC50, 0.42 μg/mL) among the tested compounds. Thus, azines based ligands and their Pd complexes can be good antimicrobial and antimalarial agents if explored further.  相似文献   

3.
The essential oil from the rhizomes of Aframomum sceptrum (Zingiberaceae) was analyzed by GC/MS, and its major constituents were found to be β‐pinene (12.7%), caryophyllene oxide (10.0%), and cyperene (6.0%). The oil was also evaluated for antimicrobial activities, in comparison with β‐pinene, caryophyllene oxide, and the leaf essential oil of Melaleuca alternifolia (Myrtaceae). The A. sceptrum essential oil exhibited bacteriostatic activity against the Gram‐positive bacteria Bacillus subtilis, Staphylococcus epidermidis, and S. aureus, but not against Gram‐negative bacteria. Moreover, it showed mild fungicidal activity against Candida albicans and Aspergillus fumigates, and remarkable antiprotozoal activity against Trypanosoma brucei brucei (MLC of 1.51 μl/ml) and Trichomonas vaginalis (IC50 of 0.12±0.02 and MLC of 1.72 μl/ml).  相似文献   

4.
In this work, some N-(9-Ethyl-9H-carbazole-3-yl)-2-(phenoxy)acetamide derivatives were synthesised and evaluated for their antimicrobial activity and cytotoxicity. The structural elucidation of the compounds was performed by IR, 1H-NMR, 13C-NMR and FAB+-MS spectral data and elemental analyses. The title compounds were obtained by reacting 2-chloro-N-(9-ethyl-9H-carbazole-3-yl)acetamide with some substituted phenols. The synthesised compounds were investigated for their antibacterial and antifungal activities against Micrococcus luteus, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Listeria monocytogenes and Candida albicans. The compounds N-(9-Ethyl-9H-carbazole-3-yl)-2-(4-ethylphenoxy)acetamide (2c) and N-(9-Ethyl-9H-carbazole-3-yl)-2-(quinolin-8-yloxy)acetamide (2n) showed notable antimicrobial activity. The compounds were also studied for their cytotoxic effects using MTT assay, and it was seen that 2n had the lowest cytotoxic activity against NIH/3T3 cells.  相似文献   

5.
Novel bis cyclohexenone ester derivatives 14–19 were synthesized and characterized by their spectral data. In vitro microbiological evaluations were carried out for all the novel compounds 14–19 against clinically isolated bacterial and fungal strains. Compounds 15, 16, 18 against Staphylococcus aureus, 14, 15 against β-Haemolytic streptococcus, 15, 19 against Micrococcus luteus, 17, 18 against Salmonella typhii, 14, 17 against Shigella flexneri, 15 against Escherichia coli, 16 against Pseudomonas aeruginosa, 15, 18, 19 against Klebsiella pneumonia exhibited potent antibacterial activity at an minimum inhibitory concentration (MIC) value of 6.25 μg/ml, whereas compound 16 against Aspergillus flavus, 17 against A. niger, 16, 18 against Mucor indicus, 15, 17–19 against Microsporum gypseum revealed excellent antifungal activity at an MIC value of 6.25 μg/ml.  相似文献   

6.
In this study, in vitro antimicrobial activity of the physodic acid, usnic acid, atranorin and gyrophoric acid isolated from the lichens Hypogymnia physodes, Parmelia caperata, Physcia aipolia and Umbilicaria polyphylla, has been investigated. An antibiotic assessment was done against six bacteria (three Gram-positive and three Gram-negative) and eight fungi by determining the minimal inhibitory concentration (MIC) by the broth tube dilution method. The tested lichen substances inhibited growth of all the tested microorganisms. The bacteria showed a higher sensitivity against the tested fungi. The highest antimicrobial activity was found in the usnic acid of the Parmelia caperata lichen, where the lowest MIC was 0.0037 mg/ml against the Klebsiella pneumoniae (even lower than the one given by the streptomycin standard). The weakest antimicrobial activity was found in the physodic acid, which inhibited most of the microorganisms in the concentration of 1 mg/ml. Generally, all the components had relatively strong antimicrobial activity against the tested microorganisms, among which were human and animal pathogens. This could be of significance for their use for pharmaceutical purposes.  相似文献   

7.
The purpose of this work was to determine the chemical composition and evaluate the antichemotactic, antioxidant, and antifungal activities of the essential oil obtained from the species Cryptocarya aschersoniana Mez , Cinnamomum amoenum (Ness & Mart .) Kosterm. , and Schinus terebinthifolia Raddi , as well as the combination of C. aschersoniana essential oil and terbinafine against isolates of dermatophytes. Allo‐aromadendrene, bicyclogermacrene, and germacrene B were identified as major compounds in essential oils. The essential oil of C. aschersoniana shown 100 % inhibitory effect on leukocyte migration at the concentration of 10 μg/mL while S. terebinthifolia oil presented 80.1 % inhibitory effect at the same concentration. Only S. terebinthifolia oil possessed free‐radical‐scavenging activity which indicates its antioxidant capacity. The essential oils were also tested against fungal isolates of dermatophyte species (Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis and Microsporum gypseum), resulting in MIC ranging from 125 μg/mL to over 500 μg/mL. C. aschersoniana oil combined with terbinafine resulted in an additive interaction effect. In this case, the essential oil may act as a complement to conventional therapy for the topical treatment of superficial fungal infections, mainly because it is associated with an anti‐inflammatory effect.  相似文献   

8.
Chondroitin synthesis was performed using the recombinant Escherichia coli(C2987) strain created by transforming the plasmid pETM6-PACF-vgb, which carries the genes responsible for chondroitin synthesis, kfoA, kfoC, kfoF, and the Vitreoscilla hemoglobin gene (vgb). Then, Microbial chondroitin sulfate (MCS)’s antioxidant, anticholinesterase, and antibacterial activity were compared with commercial chondroitin sulfate (CCS). The antioxidant studies revealed that the MCS and CCS samples could be potential targets for scavenging radicals and cupric ion reduction. MCS demonstrated better antioxidant properties in the ABTS assay with the IC50 value of 0.66 mg than CCS. MCS showed 2.5-fold for DPPH and almost 5-fold for ABTS⋅+ (with a value of 3.85 mg/mL) better activity than the CCS. However, the compounds were not active for cholinesterase enzyme inhibitions. In the antibacterial assay, the Minimum inhibitory concentration (MIC) values of MCS against S. aureus, E. aerogenes, E. coli, P. aeruginosa, and K. pneumoniae (0.12, 0.18, 0.12, 0.18, and 0.18 g/mL, respectively) were found to be greater than that of CCS (0.42, 0.48, 0.36, 0.36, and 0.36 g/mL, respectively). This study demonstrates that MCS is a potent pharmacological agent due to its physicochemical properties, and its usability as a therapeutic-preventive agent will shed light on future studies.  相似文献   

9.
Copper oxide nanomaterials were synthesized by a facile sustainable biological method using two plant species (Zanthoxylum armatum DC. and Berberis lycium Royle ). The formation of materials was confirmed by FT‐IR, ATR, UV‐visible, XRD, TEM, SEM, EDX, TGA and PL. The antibacterial activity was evaluated by agar well diffusion method to ascertain the efficacy of plant species extract and extract derived copper oxide nanomaterials against six Gram‐positive bacteria namely Staphylococcus aureus, Streptococcus mutans, Streptococcus pyogenes, Corynebacterium diphtheriae, Corynebacterium xerosis, Bacillus cereus and four Gram‐negative bacteria such as Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa and Proteus vulgaris against the standard drug, Ciprofloxacin for Gram‐positive and Gentamicin for Gram‐negative bacteria, respectively. In both cases, copper oxide nanomaterials were found to be sensitive in all the bacterial species. Sensitivity of copper oxide nanomaterials shows an be higher as compared to plant species extract against different bacteria. Scavenging activity of plant extracts along with nanomaterials have been accessed using previously reported protocols employing ascorbic acid as standard. Scavenging activity of copper oxide nanomaterials shows an increase with increase in concentration. The biological activity (bactericidal and scavenging efficiency) of plant derived copper oxide nanomaterials revealed that these materials can be used as potent antimicrobial agent and DPPH scavengers in industrial as well as pharmacological fields.  相似文献   

10.
A series of novel quinazolinone derivatives containing a substituted amino moiety were synthesized, evaluated for their cytotoxic and antibacterial activities. The results of MTT assay showed that all synthesized target compounds 5A  –  5O showed potent cytotoxicity against SGC‐7901 (IC50, 0.72 – 1.41 μm ). Moreover, the compounds 5D , 5I , and 5K showed better selectivity as compared with positive controls pemetrexed and MTX due to weak cytotoxicity against normal tissue cell line HUVSMC. Among synthesized compounds, the compounds 5E , 5J , 5L , and 5N showed broad‐spectrum cytotoxic activities against at least four cancer cell lines at a micromolar level. The results of antibacteria evaluation revealed that all synthesized compounds showed good to moderate antibacterial activities against Gram‐negative bacteria Escherichia coli. Among them, the MIC values of the compounds 5C , 5F , and 5M were 0.31 μg/mL.  相似文献   

11.
Seven phenolic compounds (ferulic acid, caffeic acid, 4-methoxycinnamic acid, 3,4-dimethoxycinnamic acid, 3-hydroxy-4-methoxybenzaldehyde, 3-methoxy-4-hydroxypropiophenone and 1-O,2-O-digalloyl-6-O-trans-p-coumaroyl-β-D-glucopyranoside), a flavanonol (7-O-methylaromadendrin), two lignans (pinoresinol and matairesinol) and six diterpenic acids/alcohol (19-acetoxy-13-hydroxyabda-8(17),14-diene, totarol, 7-oxodehydroabietic acid, dehydroabietic acid, communic acid and isopimaric acid) were isolated from the hydroalcoholic extract of a Brazilian Brown Propolis and characterized by NMR spectral data analysis. The volatile fraction of brown propolis was characterized by CG-MS, composed mainly of monoterpenes and sesquiterpenes, being the major α-pinene (18.4 %) and β-pinene (10.3 %). This propolis chemical profile indicates that Pinus spp., Eucalyptus spp. and Araucaria angustifolia might be its primary plants source. The brown propolis displayed significant activity against Plasmodium falciparum D6 and W2 strains with IC50 of 5.3 and 9.7 μg/mL, respectively. The volatile fraction was also active with IC50 of 22.5 and 41.8 μg/mL, respectively. Among the compounds, 1-O,2-O-digalloyl-6-O-trans-p-coumaroyl-β-D-glucopyranoside showed IC50 of 3.1 and 1.0 μg/mL against D6 and W2 strains, respectively, while communic acid showed an IC50 of 4.0 μg/mL against W2 strain. Cytotoxicity was determined on four tumor cell lines (SK-MEL, KB, BT-549, and SK-OV-3) and two normal renal cell lines (LLC-PK1 and VERO). Matairesinol, 7-O-methylaromadendrin, and isopimaric acid showed an IC50 range of 1.8–0.78 μg/mL, 7.3–100 μg/mL, and 17–18 μg/mL, respectively, against the tumor cell lines but they were not cytotoxic against normal cell lines. The crude extract of brown propolis displayed antimicrobial activity against C. neoformans, methicillin-resistant Staphylococcus aureus, and P. aeruginosa at 29.9 μg/mL, 178.9 μg/mL, and 160.7 μg/mL, respectively. The volatile fraction inhibited the growth of C. neoformans at 53.0 μg/mL. The compounds 3-hydroxy-4-methoxybenzaldehyde, 3-methoxy-4-hydroxypropiophenone and 7-oxodehydroabietic acid were active against C. neoformans, and caffeic and communic acids were active against methicillin-resistant Staphylococcus aureus.  相似文献   

12.
A series of novel 2-phenyl-3-(4,6-diarylpyrimidin-2-yl)thiazolidin-4-ones 23-33 were synthesized, and studied for their in vitro antibacterial and antifungal activities against clinically isolated strains. Generally compounds possessing electron donating groups showed good antibacterial activity. Compound 31, which contain both electron withdrawing chloro and electron donating methyl groups showed potent activity against all the tested Gram positive and Gram negative bacterial strains whereas compounds 32 and 33 which contain electron donating methoxy functional group at the para position of the phenyl ring attached to pyrimidine ring showed promising activity against S.aureus, S.typhii and E.coli. Compounds 32 and 33, both containing electron withdrawing groups (-Cl, -F) showed excellent activities against all the tested A. flavus, Mucor, Rhizopus and M.gypsuem fungal strains. while against Mucor, compound 27 which contains an electron donating methyl group at the para position of the phenyl ring attached to pyrimidine ring showed promising activity. Also compound 31, which contains both electron withdrawing chloro and electron donating methyl groups showed potent activity against A. flavus and Rhizopus.  相似文献   

13.
Abstract

A series of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline, and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives was designed, synthesised, and evaluated in?vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiprotozoal activity with IC50 values in the µM range. In addition, the in?vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The quinoline 1c was identified as the most potent antimalarial candidate with a ratio of cytotoxic to antiparasitic activities of 97 against the P. falciparum CQ-sensitive strain 3D7. The quinazoline 3h was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 43 on T. brucei brucei strain. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma are possible targets of this kind of nitrogen heterocyclic compounds, we have also investigated stabilisation of the Plasmodium and Trypanosoma telomeric G-quadruplexes by our best compounds through FRET melting assays.  相似文献   

14.
The aqueous, ethyl acetate, methanolic and Total Oligomer Flavonoids (TOF) enriched extracts, obtained from the aerial parts of Cyperus rotundus, were investigated for their contents in phenolic compounds. Antioxidative activity using the NBT/riboflavin assay system, antimicrobial activity against Gram positive and Gram negative bacterial reference strains as well as antigenotoxic activity tested with the SOS chromotest assay were also studied. Significant antibacterial activity against reference strains; Staphylococcus aureus, Enterococcus faecalis, Salmonella enteritidis and Salmonella typhimurium, was detected in the presence of ethyl acetate and TOF enriched extracts. In addition to their antimicrobial activity, the same extracts showed a significant ability to inhibit nitroblue tetrazolium reduction by the superoxide radical in a non enzymatic O2.− generating system, and were also able to reduce significantly the genotoxicity induced by nifuroxazide and Aflatoxin B1. The antioxidant, antimicrobial and antigenotoxic activities exhibited by C. rotundus depend on the chemical composition of the tested extracts.  相似文献   

15.
【背景】黏细菌是一类具有多细胞群体行为特征的高等原核生物,其对植物病原真菌和细菌的捕食特性使其在植物病害防治方面具有重要的应用潜力。【目的】探究乌鲁木齐天山大峡谷原始森林可培养黏细菌的多样性并分析其抗菌活性,为发掘黏细菌生防菌株奠定基础。【方法】以天山大峡谷原始森林采集的土样和腐木为分离材料,采用兔粪诱导法和被捕食菌诱导法从中分离纯化黏细菌菌株,结合形态学观察、生理生化测定和16S rRNA基因序列分析确定其分类地位,并以6种植物病原真菌[大丽轮枝菌(Verticillium dahliae)、尖孢镰刀菌萎蔫专化型(Fusarium oxysporum f. sp. vasinfectum)、拟轮枝链孢霉(Fusarium verticillioides)、立枯丝核菌(Rhizoctonia solani)、黄色镰刀菌(Fusarium culmorum)、细极链格孢菌(Alternaria tenuissima)]和1种植物病原细菌[梨火疫病菌(Erwinia amylovora)]为靶标菌,通过平板对峙法和菌苔捕食法测定其抗菌活性。【结果】从采集的样品中分离出70株菌株,经纯化后获得36株黏细菌纯培养物。经鉴定隶属于4个属,黏球菌属(Myxococcus) 30株、孢囊杆菌属(Cystobacter) 3株、珊瑚球菌属(Corallococcus) 2株和原囊菌属(Archangium) 1株。抗菌活性分析显示,本研究获得的36株黏细菌至少对2种植物病原真菌有抗菌活性,表现出广谱的抗真菌活性,初步筛选出一株菌株NSE37-1兼具广谱和高效抗真菌活性;供试的15株黏细菌对梨火疫病菌均具有捕食活性,初步筛选出一株对梨火疫病菌具有较强捕食能力的黏细菌菌株NSE25。【结论】天山大峡谷可培养黏细菌资源比较丰富,黏球菌属是该地区可培养黏细菌菌群中的优势菌。分离纯化出的黏细菌菌株均表现出广谱的抗植物病原菌活性,具有进一步研究和开发的潜在价值。  相似文献   

16.
A novel series of complexes of the type [M(C36H22N6)X]X2, where M = Cr(III), Mn(III), Fe(III); X = Cl?, NO3?, CH3COO?; and (C36H22N6) corresponds to the tetradentate macrocyclic ligand, have been synthesized by condensation of 1,8-diaminonaphthalene and isatin in the presence of trivalent metal salts in methanolic medium. The complexes have been characterized by elemental analysis, conductance and magnetic measurements, and UV/Vis, IR, and mass spectroscopy. On the basis of these studies, a five coordinate square pyramidal geometry for all of these complexes is proposed. All synthesized macrocyclic complexes have been tested for in vitro antimicrobial activities against some pathogenic bacterial strains, viz. Staphylococcus aureus, Bacillus subtilis (Gram-positive), Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and two fungal strains, viz. Aspergillus niger, Aspergillus flavus. The MICs shown by the complexes against these microbial strains have been compared with MICs shown by standard antibiotic ciprofloxacin and the antifungal drug amphotericin-B.  相似文献   

17.
Some novel cephalexin-derived furanyl, thiophenyl, pyrrolyl, salicylyl and pyridyl Schiff's bases and their cobalt (II), copper (II), nickel (II) and zinc (II) complexes have been synthesized and studied for their antifungal properties against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The presence of metal ions in the investigated Schiff's base complexes reported here lead to significant antifungal activity, whereas the parent ligands were generally less active.  相似文献   

18.
The antifungal, antibacterial, and insect‐repellent activities of the essential oils (EOs) of Acantholippia seriphioides, Artemisia mendozana, Gymnophyton polycephalum, Satureja parvifolia, Tagetes mendocina, and Lippia integrifolia, collected in the Central Andes area, province of San Juan, Argentina, were investigated. The dermatophytes Microsporum gypseum, Trichophyton mentagrophytes, and T. rubrum were inhibited by the EOs of G. polycephalum, L. integrifolia, and S. parvifolia, with minimum inhibitory concentrations (MICs) between 31.2 and 1000 μg/ml. Moreover, all EOs presented moderate activity against the bacteria tested, and the L. integrifolia and G. polycephalum EOs showed excellent repellent properties against Triatoma infestans, the Chagas disease vector, with repellency values between 60 and 100%. The A. seriphioides, G. polycephalum, and L. integrifolia EOs, obtained by hydrodistillation, were characterized by GC‐FID and GC/MS analyses. The highest number of components (40) was identified in L. integrifolia EO, which, along with that of A. seriphioides, contained important amounts of oxygenated monoterpenes (44.35 and 29.72%, resp.). Thymol (27.61%) and carvacrol (13.24%) were the main components of A. seriphioides EO, and borneol, lippifoli‐1(6)‐en‐5‐one, and terpinen‐4‐ol (>8.5%) were the principal compounds of L. integrifolia EO. These results support the idea that oxygenated monoterpenes are the bioactive fractions of the EOs. Finally, the study shows that these Andean species might be used to treat superficial fungal infections and to improve the local Chagas disease situation by vector‐control.  相似文献   

19.
The essential oils (EOs) obtained from the leaves of Iryanthera polyneura Ducke trees was chemically Assessed and tested for the ability of inhibiting the growth of Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans and S. sanguinis. The oil was also tested against breast (MCF‐7) and prostate (PC‐3) cancer cell lines. Minimum bactericidal concentrations (MBCs) and 50 % inhibition concentrations (IC50) values were obtained. EOs were active against Gram‐positive bacteria. Spathulenol, α‐cadinol and τ‐muurolol were major components of EOs. The oils showed a higher cytotoxicity against PC‐3 than MCF‐7 cells, although the oils were active against both cell types. Oils obtained from leaves collected in the dry season were more active against E. faecalis, S. aureus and PC‐3, while the oils obtained from leaves collected in the rainy season were more active against S. mutans, S. sanguinis and MCF‐7. The antibacterial and cytotoxic activities of the essential oils from the leaves of I. polyneura are related to the seasonal climate variation and are influenced by compounds that are minor components of the oils.  相似文献   

20.
A series of sarisan analogs containing 1,3,4‐oxadiazole moieties were synthesized by iodine‐mediated oxidative cyclization and screened in vitro for their antifungal activities at 50 μg/mL against five phytopathogenic fungi such as Valsa mali, Curvularia lunata, Alternaria alternate, Fusarium solani and Fusarium graminearum. 1,3,4‐Oxadiazole derivatives 7e , 7p , 7r , 7t and 7u exhibited potent and a broad spectrum of antifungal activities against at least three phytopathogenic fungi at the concentration of 50 μg/mL. Especially, compound 7r displayed more potent antifungal activities against five phytopathogenic fungi than the positive control hymexazol. The EC50 of 7r against V. mali, C. lunata and A. alternate were 12.6, 14.5 and 17.0 μg/mL, respectively. Additionally, some interesting results of structure‐activity relationships (SARs) were also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号