首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been found that long noncoding RNA HOTAIR, microRNA‐130a (miR‐130a) and insulin‐like growth factor 1 (IGF1) expression are associated with ovarian cancer, thus, we hypothesised that the HOTAIR/miR‐130a/IGF1 axis might associate with endocrine disorders and biological behaviours of ovarian granulosa cells in rat models of polycystic ovary syndrome (PCOS). PCOS rat models were established by injection of dehydro‐isoandrosterone, followed by treatment of si‐HOTAIR, oe‐HOTAIR, miR‐130a mimics or miR‐130a inhibitors. Serum hormonal levels were determined to evaluate endocrine conditions. The effect of HOTAIR and miR‐130a on activities of isolated ovarian granulosa cells was assessed, as well as the involvement of IGF1.In the ovarian tissues and granulosa cells of PCOS rat models, highly expressed HOTAIR and IGF1 and poorly expressed miR‐130a were identified. In response to oe‐HOTAIR, serum levels of E2, T and LH were increased and serum levels of FSH were reduced; the proliferation of granulosa cells was reduced and apoptosis was promoted; notably, expression of miR‐130a was reduced while expression of IGF1 was increased. The treatment of si‐HOTAIR reversed the situation. Furthermore, the binding of HOTAIR to miR‐130a and targeting relationship of miR‐130a and IGF1 were confirmed. LncRNA HOTAIR up‐regulates the expression of IGF1 and aggravates the endocrine disorders and granulosa cell apoptosis through competitive binding to miR‐130a in rat models of PCOS. Based on our finding, we predict that competitive binding of HOTAIR to miR‐130a may act as a novel target for the molecular treatment of PCOS.  相似文献   

2.
3.
AFAP1‐AS1 is a long non‐coding RNA that is associated with tumorigenesis and poor prognosis in a variety of cancers. We have been suggested that AFAP1‐AS1 increases tumorigenesis in laryngeal carcinoma specifically by enhancing stemness and chemoresistance. We assessed AFAP1‐AS1 expression in human laryngeal specimens, paired adjacent normal tissues and human HEp‐2 cells. Indeed, we found not only that AFAP1‐AS1 was up‐regulated in laryngeal carcinoma specimens and cells, but also that stemness‐associated genes were overexpressed. Silencing of AFAP1‐AS1 promoted HEp‐2 cell chemoresistance under cisplatin treatment. Expression of AFAP1‐AS1 was increased in drug‐resistant Hep‐2 cells. We then probed the mechanism of AFAP1‐AS1 activity and determined that miR‐320a was a potential molecular target of AFAP1‐AS1. Luciferase reporter and qRT‐PCR assays of AFAP1‐AS1 and miR‐320a levels in human specimens and cell cultures indicated that AFAP1‐AS1 negatively regulates miR‐320a. To discover the molecular mechanism of miR‐320a, we again used the DIANA Tools algorithm to predict its genetic target, RBPJ. After cloning the 3′‐untranslated regions (3′‐UTR) of RBPJ into a luciferase reporter, we determined that miR‐320a did in fact reduce RBPJ mRNA and protein levels. Ultimately, we determined that AFAP1‐AS1 increases RBPJ expression by negatively regulating miR‐320a and RBPJ overexpression rescues stemness and chemoresistance inhibited by AFAP1‐AS1 silencing. Taken together, these results suggest that AFAP1‐AS1 can serve as a prognostic biomarker in laryngeal carcinoma and that miR‐320a has the potential to improve standard therapeutic approaches to the disease, especially for cases in which cancer cell stemness and drug resistance present significant barriers to effective treatment.  相似文献   

4.
5.
Alzheimer's disease (AD) and cancer have inverse relationship in many aspects. Some tumor suppressors, including miR‐34c, are decreased in cancer but increased in AD. The upstream regulatory pathways and the downstream mechanisms of miR‐34c in AD remain to be investigated. The expression of miR‐34c was detected by RT–qPCR in oxidative stressed neurons, hippocampus of SAMP8 mice, or serum of patients with amnestic mild cognitive impairment (aMCI). Dual luciferase assay was performed to confirm the binding sites of miR‐34c in its target mRNA. The Morris water maze (MWM) was used to evaluate learning and memory in SAMP8 mice administrated with miR‐34c antagomir (AM34c). Golgi staining was used to evaluate the synaptic function and structure. The dramatically increased miR‐34c was mediated by ROS‐JNK‐p53 pathway and negatively regulated synaptotagmin 1 (SYT1) expression by targeting the 3′‐untranslated region (3′‐UTR) of syt1 in AD. The expression of SYT1 protein was reduced by over expression of miR‐34c in the HT‐22 cells and vice versa. Administration of AM34c by the third ventricle injection or intranasal delivery markedly increased the brain levels of SYT1 and ameliorated the cognitive function in SAMP8 mice. The serum miR‐34c was significantly increased in patients with aMCI and might be a predictive biomarker for diagnosis of aMCI. These results indicated that increased miR‐34c mediated synaptic and memory deficits by targeting SYT1 through ROS‐JNK‐p53 pathway and the miR‐34c/SYT1 pathway could be considered as a promising novel therapeutic target for patients with AD.  相似文献   

6.
Triple‐negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial‐to‐mesenchymal transition (EMT) is a key contributor in the metastatic process. In this study, we found that miR‐655 was down‐regulated in TNBC, and its expression levels were associated with molecular‐based classification and lymph node metastasis in breast cancer. These findings led us to hypothesize that miR‐655 overexpression may inhibit EMT and its associated traits of TNBC. Ectopic expression of miR‐655 not only induced the up‐regulation of cytokeratin and decreased vimentin expression but also suppressed migration and invasion of mesenchymal‐like cancer cells accompanied by a morphological shift towards the epithelial phenotype. In addition, we found that miR‐655 was negatively correlated with Prrx1 in cell lines and clinical samples. Overexpression of miR‐655 significantly suppressed Prrx1, as demonstrated by Prrx1 3′‐untranslated region luciferase report assay. Our study demonstrated that miR‐655 inhibits the acquisition of the EMT phenotype in TNBC by down‐regulating Prrx1, thereby inhibiting cell migration and invasion during cancer progression.  相似文献   

7.
Although bladder cancer is commonly chemosensitive to standard first‐line therapy, the acquisition of the resistance to cisplatin (DDP)‐based therapeutic regimens remains a huge challenge. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs, have been reported to play a critical role in cancer resistance to DDP. Here, we attempted to provide a novel mechanism by which the resistance of bladder cancer to DDP treatment could be modulated from the perspective of ncRNA regulation. We demonstrated that lncRNA MST1P2 (lnc‐MST1P2) expression was dramatically upregulated, whereas miR‐133b expression was downregulated in DDP‐resistant bladder cancer cell lines, SW 780/DDP and RT4/DDP. Lnc‐MST1P2 and miR‐133b negatively regulated each other via targeting miR‐133b. Both lnc‐MST1P2 silence and miR‐133b overexpression could resensitize DDP‐resistant bladder cancer cells to DDP treatment. More important, miR‐133b could directly target the Sirt1 3′‐untranslated region to inhibit its expression. Inc‐MST1P2/miR‐133b axis affected the resistance of bladder cancer cells to DDP via Sirt1/p53 signaling. In conclusion, MST1P2 serves as a competing endogenous RNA for miR‐133b to counteract miR‐133b‐induced suppression on Sirt1, therefore enhancing the resistance of bladder cancer cells to DDP. MST1P2/miR‐133b axis affects the resistance of bladder cancer cells to DDP via downstream Sirt1/p53 signaling.  相似文献   

8.
Polycystic ovary syndrome (PCOS), the most common female endocrine disease that causes anovulatory infertility, still lacks promising strategy for the accurate diagnosis and effective therapeutics of PCOS attributed to its unclear aetiology. In this study, we determined the abnormal reduction in circPSMC3 expression by comparing the ovarian tissue samples of PCOS patients and normal individuals. The symptom relief caused by up‐regulation of circPSMC3 in PCOS model mice suggested the potential for further study. In vitro functional experiments confirmed that circPSMC3 can inhibit cell proliferation and promote apoptosis by blocking the cell cycle in human‐like granular tumour cell lines. Mechanism study revealed that circPSMC3 may play its role through sponging miR‐296‐3p to regulate PTEN expression. Collectively, we preliminarily characterized the role and possible insights of circPSMC3/miR‐296‐3p/PTEN axis in the proliferation and apoptosis of KGN cells. We hope that this work provides some original and valuable information for the research of circRNAs in PCOS, not only to better understand the pathogenesis but also to help provide new clues for seeking for the future therapeutic target of PCOS.  相似文献   

9.
MicroRNAs (miRNAs) are powerful regulators in the tumorigenesis of cholangiocarcinoma (CCA). Previous studies report that miR‐551b‐3p acts as an oncogenic factor in ovarian cancer, but plays a tumour suppressive role in gastric cancer. However, the expression pattern and potential function of miR‐551b‐3p were still unclear in CCA. Therefore, this study aimed to explore the expression of miR‐551b‐3p and its role as well as molecular mechanism in CCA. Analysis of TCGA dataset suggested that miR‐551b‐3p was under‐expressed in CCA tissues compared to normal bile duct tissues. Furthermore, our data confirmed the decreased levels of miR‐551b‐3p in CCA samples and cell lines. Interestingly, TCGA data suggested that low miR‐551b‐3p level indicated reduced overall survival of CCA patients. Gain‐ and loss‐of‐function experiments found that miR‐551b‐3p inhibited the proliferation, G1‐S phase transition and induced apoptosis of CCA cells. In vivo experiments revealed that ectopic expression of miR‐551b‐3p inhibited tumour growth of CCA in mice. Further investigation demonstrated that miR‐551b‐3p directly bond to the 3′‐UTR of Cyclin D1 (CCND1) mRNA and negatively regulated the abundance of CCND1 in CCA cells. An inverse correlation between miR‐551b‐3p expression and the level of CCND1 mRNA was detected in CCA tissues from TCGA dataset. Notably, CCND1 knockdown showed similar effects to miR‐551b‐3p overexpression in HuCCT‐1 cells. CCND1 restoration rescued miR‐551b‐3p‐induced inhibition of proliferation, G1 phase arrest and apoptosis in HuCCT‐1 cells. In summary, miR‐551b‐3p inhibits the expression of CCND1 to suppress CCA cell proliferation and induce apoptosis, which may provide a theoretical basis for improving CCA treatment.  相似文献   

10.
The aberrant expression of human sirtuin 2 (SIRT2) has been detected in various types of cancer; however, the biological roles, underlying mechanisms and clinical significance of SIRT2 dysregulation in human colorectal cancer (CRC) remain unclear. The results of this study demonstrate that compared with paired normal tissues, SIRT2 expression is significantly decreased in CRC tissues. SIRT2 loss has been correlated with clinicopathological characteristics, including distant metastasis, lymph node metastasis and American Joint Committee on Cancer (AJCC) stage; this loss serves as an independent factor that indicates a poor prognosis for patients with CRC. Further gain‐ and loss‐of‐function analyses have demonstrated that SIRT2 suppresses CRC cell proliferation and metastasis both in vivo and in vitro. Mechanistically, miR‐212‐5p was identified to directly target the SIRT2 3′‐untranslated region (3′‐UTR), leading to SIRT2 down‐regulation. The ectopic expression of SIRT2 reverses the effect of miR‐212‐5p overexpression on CRC cell colony formation, invasion, migration and proliferation. Clinically, an inverse correlation was found between miR‐212‐5p and SIRT2 expression. High miR‐212‐5p expression has been found to result in a poor prognosis and aggressive clinicopathological characteristics in patients with CRC. Taken together, these results suggest that SIRT2, targeted by miR‐212‐5p, acts as a tumour suppressor in CRC and that the miR‐212‐5p/SIRT2 axis is a promising prognostic factor and potential therapeutic target in CRC.  相似文献   

11.
MicroRNAs are considered to play critical roles in the pathogenesis of human inflammatory arthritis, including rheumatoid arthritis (RA). The purpose of this study was to determine the relationship between miR‐10a‐5p and TBX5 in synoviocytes and evaluate their contribution to joint inflammation. The expression of miR‐10a‐5p and TBX5 in the synovium of RA and human synovial sarcoma cell line SW982 stimulated by IL‐1β was determined by RT‐qPCR and Western blotting. The direct interaction between miR‐10a‐5p and TBX5 3′UTR was determined by dual‐luciferase reporter assay in HeLa cells. Mimics and inhibitors of miR‐10a‐5p were transfected into SW982 cells. TBX5 was overexpressed by plasmid transfection or knocked down by RNAi. Proinflammatory cytokines and TLR3 and MMP13 expressions were determined by RT‐qPCR and Western blotting. Down‐regulated expression of miR‐10a‐5p and up‐regulation of TBX5 in human patients with RA were found compared to patients with OA. IL‐1β could reduce miR‐10a‐5p and increase TBX5 expression in SW982 cells in vitro. The direct target relationship between miR‐10a‐5p and 3′UTR of TBX5 was confirmed by luciferase reporter assay. Alterations of miR‐10‐5p after transfection with its mimic and inhibitor caused the related depression and re‐expression of TBX5 and inflammatory factors in SW982 cells. Overexpression of TBX5 after pCMV3‐TBX5 plasmid transfection significantly promoted the production of TLR3, MMP13 and various inflammatory cytokines, while this effect was rescued after knocking down of TBX5 with its specific siRNA. We conclude that miR‐10a‐5p in a relation with TBX5 regulates joint inflammation in arthritis, which would serve as a diagnostic and therapeutic target for RA treatment.  相似文献   

12.
Based on miR‐874 expression levels in the GSE47841 microarray, we hypothesized that the mature products of miR‐874, miR‐874‐3p, or miR‐874‐5p, would inhibit epithelial ovarian cancer (EOC) cell proliferation, metastasis, and chemoresistance. We first examined miR‐874‐3p and miR‐874‐5p expression levels in primary EOC tumor tissue samples and found that they were significantly decreased. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) cell proliferation and transwell assays revealed that miR‐874‐3p and miR‐874‐5p significantly inhibit EOC cell proliferation, migration, and invasion. Then, using MTT and soft agar assays of paclitaxel‐treated Caov3 and SKOV3 cells transfected with miR‐874‐3p and miR‐874‐5p, we found that miR‐874‐3p and miR‐874‐5p enhance EOC cell chemosensitivity. We then confirmed that serine/threonine‐protein kinase 2 (SIK2) was a target gene of miR‐874‐3p and miR‐874‐5p. Overall, the results of this study indicate that SIK2 expression can serve as a prognostic biomarker for EOC and that miR‐874‐3p and miR‐874‐5p have the potential to enhance clinical treatment of EOC.  相似文献   

13.
Accumulating data reveal that microRNAs are involved in gastric carcinogenesis. To date, no information was reported about the function and regulatory mechanism of miR‐532‐5p in human gastric cancer (GC). Thus, our study aims to determine the role and regulation of miR‐532‐5p in GC. Here, we found that transient and stable overexpression of miR‐532‐5p dramatically increased the potential of colony formation and migration of GC cells, decreased the percentage of cells in G1 phase and cell apoptosis in vitro, and increased the weight of mice lungs and number of lung xenografts in vivo. Gain‐of‐function, loss‐of‐function and luciferase activity assays demonstrated that miR‐532‐5p negatively regulated the expression of RUNX3 and its targets directly. We also found that miR‐532‐5p level was negatively correlated with RUNX3 gene expression in various GC cell lines. Our results indicate that miR‐532‐5p functions as an oncogenic miRNA by promoting cell growth, migration and invasion in human GC cells.  相似文献   

14.
Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specific lncRNA, SULT1C2A, in somitogenesis in a rat model of vitamin A deficiency (VAD)‐induced CS. Bioinformatics analysis and quantitative real‐time PCR (qRT‐PCR) indicated that SULT1C2A expression was down‐regulated in VAD group, accompanied by increased expression of rno‐miR‐466c‐5p but decreased expression of Foxo4 and somitogenesis‐related genes such as Pax1, Nkx3‐2 and Sox9 on gestational day (GD) 9. Luciferase reporter and small interfering RNA (siRNA) assays showed that SULT1C2A functioned as a competing endogenous RNA to inhibit rno‐miR‐466c‐5p expression by direct binding, and rno‐miR‐466c‐5p inhibited Foxo4 expression by binding to its 3′ untranslated region (UTR). The spatiotemporal expression of SULT1C2A, rno‐miR‐466c‐5p and Foxo4 axis was dynamically altered on GDs 3, 8, 11, 15 and 21 as detected by qRT‐PCR and northern blot analyses, with parallel changes in Protein kinase B (AKT) phosphorylation and PI3K expression. Taken together, our findings indicate that SULT1C2A enhanced Foxo4 expression by negatively modulating rno‐miR‐466c‐5p expression via the PI3K‐ATK signalling pathway in the rat model of VAD‐CS. Thus, SULT1C2A may be a potential target for treating CS.  相似文献   

15.
Background information. miRNAs (microRNAs) are a class of non‐coding RNAs that inhibit gene expression by binding to recognition elements, mainly in the 3′ UTR (untranslated region) of mRNA. A single miRNA can target several hundred mRNAs, leading to a complex metabolic network. miR‐16 (miRNA‐16), located on chromosome 13q14, is involved in cell proliferation and apoptosis regulation; it may interfere with either oncogenic or tumour suppressor pathways, and is implicated in leukaemogenesis. These data prompted us to search for and validate novel targets of miR‐16. Results. In the present study, by using a combined bioinformatics and molecular approach, we identified two novel putative targets of miR‐16, caprin‐1 (cytoplasmic activation/proliferation‐associated protein‐1) and HMGA1 (high‐mobility group A1), and we also studied cyclin E which had been previously recognized as an miR‐16 target by bioinformatics database. Using luciferase activity assays, we demonstrated that miR‐16 interacts with the 3′ UTR of the three target mRNAs. We showed that miR‐16, in MCF‐7 and HeLa cell lines, down‐regulates the expression of caprin‐1, HMGA1a, HMGA1b and cyclin E at the protein level, and of cyclin E, HMGA1a and HMGA1b at the mRNA levels. Conclusions. Taken together, our data demonstrated that miR‐16 can negatively regulate two new targets, HMGA1 and caprin‐1, which are involved in cell proliferation. In addition, we also showed that the inhibition of cyclin E expression was due, at least in part, to a decrease in its mRNA stability.  相似文献   

16.
17.
Lung cancer is the most common incident cancer, with a high mortality worldwide, and non‐small‐cell lung cancer (NSCLC) accounts for approximately 85% of cases. Numerous studies have shown that the aberrant expression of microRNAs (miRNAs) is associated with the development and progression of cancers. However, the clinical significance and biological roles of most miRNAs in NSCLC remain elusive. In this study, we identified a novel miRNA, miR‐34b‐3p, that suppressed NSCLC cell growth and investigated the underlying mechanism. miR‐34b‐3p was down‐regulated in both NSCLC tumour tissues and lung cancer cell lines (H1299 and A549). The overexpression of miR‐34b‐3p suppressed lung cancer cell (H1299 and A549) growth, including proliferation inhibition, cell cycle arrest and increased apoptosis. Furthermore, luciferase reporter assays confirmed that miR‐34b‐3p could bind to the cyclin‐dependent kinase 4 (CDK4) mRNA 3′‐untranslated region (3′‐UTR) to suppress the expression of CDK4 in NSCLC cells. H1299 and A549 cell proliferation inhibition is mediated by cell cycle arrest and apoptosis with CDK4 interference. Moreover, CDK4 overexpression effectively reversed miR‐34‐3p‐repressed NSCLC cell growth. In conclusion, our findings reveal that miR‐34b‐3p might function as a tumour suppressor in NSCLC by targeting CDK4 and that miR‐34b‐3p may, therefore, serve as a biomarker for the diagnosis and treatment of NSCLC.  相似文献   

18.
19.
MicroRNAs (miRNAs) play a pivotal role in carcinogenesis. Dysregulation of miRNAs, both oncogenic miRNAs and tumour‐suppressive miRNAs, is closely associated with cancer development and progression. The levels of miRNAs could be changed epigenetically by DNA methylation in the 5′ untranslated region (UTR) of pre‐mature miRNAs. To investigate whether DNA methylation alters the expression of miR‐129 in lung cancer, we did DNA methylation assays and found that 5′ UTR region of miR‐129‐2 gene was absolutely methylated in both A549 and SPCA‐1 lung cancer cells, but totally un‐methylated in 95‐D cells. The expression of miR‐129 was restored by 5‐Aza‐2'‐deoxycytidine (DAC), a de‐methylation agent, in both A549 and SPCA‐1 cells, resulting in attenuated cell migration and invasion ability, and decreased protein level of NF‐κB, which indicates the involvement of NF‐κB pathway. To further illustrate the roles of miR‐129 in lung tumourigenesis, we overexpressed miR‐129 in lung cancer cells by transfection of miR‐129 mimics, and found arrested cell proliferation at G2/M phase of cell cycle and inhibited cell invasion. These findings strongly suggest that miR‐129 is a tumour suppressive miRNA, playing important roles in the development and progression of human lung cancer.  相似文献   

20.
The study was aimed to screen out miRNAs with differential expression in hepatocellular carcinoma (HCC), and to explore the influence of the expressions of these miRNAs and their target gene on HCC cell proliferation, invasion and apoptosis. MiRNAs with differential expression in HCC were screened out by microarray analysis. The common target gene of these miRNAs (miR‐139‐5p, miR‐940 and miR‐193a‐5p) was screened out by analysing the target genes profile (acquired from Targetscan) of the three miRNAs. Expression levels of miRNAs and SPOCK1 were determined by quantitative real time polymerase chain reaction (qRT‐PCR). The target relationships were verified by dual luciferase reporter gene assay and RNA pull‐down assay. Through 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide,thiazolyl blue tetrazolium bromide (MTT) and transwell assays and flow cytometry, HCC cell viability, invasion and apoptosis were determined. In vivo experiment was conducted in nude mice to investigate the influence of three miRNAs on tumour growth. Down‐regulation of miR‐139‐5p, miR‐940 and miR‐193a‐5p was found in HCC. Overexpression of these miRNAs suppressed HCC cell viability and invasion, promoted apoptosis and inhibited tumour growth. SPOCK1, the common target gene of miR‐139‐5p, miR‐940 and miR‐193a‐5p, was overexpressed in HCC. SPOCK1 overexpression promoted proliferation and invasion, and restrained apoptosis of HCC cells. MiR‐139‐5p, miR‐940 and miR‐193a‐5p inhibited HCC development through targeting SPOCK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号