首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a highly potent and highly selective oral inhibitor of FLT3/AXL, gilteritinib showed activity against FLT3D835 and FLT3‐ITD mutations in pre‐clinical testing, although its role on colorectal cancer (CRC) cells is not yet fully elucidated. We examined the activity of gilteritinib in suppressing growth of CRC and its enhancing effect on other drugs used in chemotherapy. In this study, we observed that, regardless of p53 status, treatment using gilteritinib induces PUMA in CRC cells via the NF‐κB pathway after inhibition of AKT and activation of glycogen synthase kinase 3β (GSK‐3β). PUMA was observed to be vital for apoptosis in CRC cells through treatment of gilteritinib. Moreover, enhancing induction of PUMA through different pathways could mediate chemosensitization by using gilteritinib. Furthermore, PUMA deficiency revoked the antitumour role of gilteritinib in vivo. Thus, our results indicate that PUMA mediates the antitumour activity of gilteritinib in CRC cells. These observations are critical for the therapeutic role of gilteritinib in CRC.  相似文献   

2.
3.
4.
5.
As a malignant tumour of the central nervous system, glioma exhibits high incidence and poor prognosis. Although TNIP1 and the TNF‐α/NF‐κB axis play key roles in immune diseases and inflammatory responses, their relationship and role in glioma remain unknown. Here, we revealed high levels of TNIP1 and TNF‐α/NF‐κB in glioma tissue. Glioma cell proliferation was activated with TNF‐α treatment and showed extreme sensitivity to the TNF receptor antagonist. Furthermore, loss of TNIP1 disbanded the A20 complex responsible for IκB degradation and NF‐κB nucleus translocation, and consequently erased TNFα‐induced glioma cell proliferation. Thus, our investigation uncovered a vital function of the TNIP1‐mediated TNF‐α/NF‐κB axis in glioma cell proliferation and provides novel insight into glioma pathology and diagnosis.  相似文献   

6.
Disabled‐1 (Dab1) is best known as an adaptor protein regulating neuron migration and lamination during development. However, the exact function of Dab1 in breast cancer is unknown. In this study, we examined the expression of Dab1 in 38 breast cancer paraffin sections, as well as 60 paired frozen breast cancer and their adjacent tissues. Our results showed that Dab1 was reduced in breast cancer, and its compromised expression correlated with triple negative breast cancer phenotype, poor differentiation, as well as lymph node metastasis. Functional analysis in breast cancer cell lines demonstrated that Dab1 promoted cell apoptosis, which, at least partially, depended on its regulation of NF‐κB/Bcl‐2/caspase‐9 pathway. Our study strongly suggests that Dab1 may be a potential tumour suppressor gene in breast cancer.  相似文献   

7.
8.
This study investigated the anticancer effects of geraniin on ovarian cancer cells and the signaling pathways involved. Ovarian cancer cells were treated with different concentrations of geraniin for 48 h and examined for viability, apoptosis, mitochondrial membrane depolarization, and gene expression. Xenograft tumor studies were performed to determine the anticancer activity of geraniin in vivo. Geraniin significantly decreased cancer cell viability in a concentration‐dependent fashion. Geraniin significantly triggered apoptosis, which was accompanied by loss of mitochondrial membrane potential and increased cytochrome c release and caspsase‐3 activity. Mechanistically, geraniin significantly downregulated Mcl‐1 and impaired NF‐κB p65 binding to the mcl‐1 promoter. Overexpression of Mcl‐1 significantly reversed geraniin‐induced apoptosis in OVCAR3 cells. In addition, geraniin retarded ovarian cancer growth and reduced expression of phospho‐p65 and Mcl‐1. Collectively, geraniin elicits growth suppression in ovarian cancer through inhibition of NF‐κB and Mcl‐1 and may provide therapeutic benefits for this malignancy.  相似文献   

9.
10.
Smac mimetics are potential anticancer therapeutics selectively killing cancer cells through autocrine tumor necrosis factor (TNF)‐mediated apoptosis pathway. Our recent study reveal that the Smac mimetic compound 3 (SMC3)‐activated NF‐κB protects cancer cells against apoptosis, thus blunting SMC3's anticancer activity. Based on our previous observations that the nutrient flavonoid luteolin potently blocks TNF‐induced NF‐κB activation in cancer cells, we investigated if the combination of SMC3 and luteolin would achieve a synergistic anticancer activity. The results show that luteolin had no effect on autocrine TNF but it effectively blocked SMC3‐induced nuclear factor kappa B (NF‐κB) activation and expression of anti‐apoptotic NF‐κB targets. When SMC3 and luteolin were combined in treating cancer cells derived from lung and liver tumors, the activation of TNF‐dependent apoptosis was markedly sensitized and a synergistic cytotoxic effect was achieved. In addition, the SMC3 and luteolin co‐treatment had marginal effect on immortalized normal human bronchial epithelial cells. The results suggest that combination of SMC3 and luteolin is an effective approach for improving the anticancer value of SMC3, which has implications in cancer prevention and therapy. J. Cell. Biochem. 108: 1125–1131, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
β‐carotene, a type of terpenoid, has many metabolic and physiological functions. In particular, β‐carotene has an antitumor effect. However, the efficacy of β‐carotene against esophageal squamous cell carcinoma (ESCC) remains unclear. In our study, β‐carotene inhibited the growth of ESCC cells and downregulated expression of the Caveolin‐1 (Cav‐1) protein. Cav‐1 protein was expressed only in ESCC cells, not in Het‐1A cells. Moreover, β‐carotene triggered apoptosis, induced cell cycle G0?G1 phase arrest, and inhibited cell migration. To explore the mechanism involved in these processes, we further examined the effect of β‐carotene on the Cav‐1‐mediated AKT/NF‐κB pathway. The results showed that the level of AKT and NF‐κB phosphorylation was dramatically inhibited, which led to an increase in the Bax/Bcl‐2 ratio. Correspondingly, the activity of Caspase‐3 was also enhanced. These data suggest that β‐carotene has an antiproliferative role in ESCC cells and may be a promising chemotherapeutic agent for use against ESCC cells.  相似文献   

13.
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway.  相似文献   

14.
The osteoarthritis (OA) progression is now considered to be related to inflammation. Anemonin (ANE) is a small natural molecule extracted from various kinds of Chinese traditional herbs and has been shown to inhibiting inflammation response. In this study, we examined whether ANE could attenuate the progression of OA via suppression of IL‐1β/NF‐κB pathway activation. Destabilization of the medial meniscus (DMM) was performed in 10‐week‐old male C57BL/6J mice. ANE was then intra‐articularly injected into joint capsule for 8 and 12 weeks. Human articular chondrocytes and cartilage explants challenged with interleukin‐1β (IL‐1β) were treated with ANE. We found that ANE delayed articular cartilage degeneration in vitro and in vivo. In particular, proteoglycan loss and chondrocyte hypertrophy were significantly decreased in ANE ‐treated mice compared with vehicle‐treated mice. ANE decreased the expressions of matrix metalloproteinase‐13 (MMP13), A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), collagen X (Col X) while increasing Aggrecan level in murine with DMM surgery. ANE treatment also attenuated proteoglycan loss in human cartilage explants treated with IL‐1β ex vivo. ANE is a potent protective molecule for OA; it delays OA progression by suppressing ECM loss and chondrocyte hypertrophy partially by suppressing IL‐1β/NF‐κB pathway activation.  相似文献   

15.
Human NDR1/STK38 belongs to the nuclear‐Dbf2‐related (NDR) family of Ser/Thr kinases. It has been implicated to function in centrosome duplication, control of cell cycle and apoptosis. However, the mechanism of NDR1 signaling pathway remains largely elusive. Here, we report a novel role of NDR1 in NF‐κB activation. By overexpression, NDR1 potentiates NF‐κB activation induced by TNFα, whereas knockdown of NDR1 expression inhibits NF‐κB activation induced by TNFα. Coimmunoprecipitation shows that NDR1 interacts with multiple signal components except p65 in NF‐κB signaling pathway. Furthermore, both phosphorylation and kinase dead mutants of NDR1 lose their synergistic effects on TNFα‐induced NF‐κB activation. siRNA oligo against NDR1 and kinase dead mutant as well mainly block the NF‐κB activation induced by TRAF2 but not RIP1. Furthermore, kinase dead mutant of NDR1 fails to interact with TRAF2. Taken together, our findings suggest an unknown function of NDR1, which may regulate NF‐κB activation by its kinase activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Over‐activated osteoclastogenesis, which is initiated by inflammation, has been implicated in osteoporosis. Corilagin, a natural compound extracted from various medicinal herbaceous plants, such as Cinnamomum cassia, has antioxidant and anti‐inflammatory activities. We found that Corilagin suppressed osteoclast differentiation in a dose‐dependent manner, significantly decreased osteoclast‐related gene expression and impaired bone resorption by osteoclasts. Moreover, phosphorylation of members of the nuclear factor‐kappaB (NF‐κB) and PI3K/AKT signalling pathways was reduced by Corilagin. In a murine model of osteoporosis, Corilagin inhibited osteoclast functions in vivo and restored oestrogen deficiency‐induced bone loss. In conclusion, our findings suggested that Corilagin inhibited osteoclastogenesis by down‐regulating the NF‐κB and PI3K/AKT signalling pathways, thus showing its potential possibility for the treatment of osteoporosis.  相似文献   

17.
18.
19.
20.
Garcinol, obtained from Garcinia indica in tropical regions, is used for its numerous biological effects. Its anti‐cancer activity has been suggested but the mechanism of action has not been studied in‐detail, especially there is no report on its action against breast cancer cells. Here we tested our hypothesis that garcinol may act as an anti‐proliferative and apoptosis‐inducing agent against breast cancer cell lines. Using multiple techniques such as MTT, Histone‐DNA ELISA, Annexin V‐PI staining, Western blot for activated caspases and cleaved PARP, homogenous caspase‐3/7 fluorometric assay and EMSA, we investigated the mechanism of apoptosis‐inducing effect of garcinol in ER‐positive MCF‐7 and ER‐negative MDA‐MB‐231 cells. We found that garcinol exhibits dose‐dependent cancer cell‐specific growth inhibition in both the cell lines with a concomitant induction of apoptosis, and has no effect on non‐tumorigenic MCF‐10A cells. Our results suggested induction of caspase‐mediated apoptosis in highly metastatic MDA‐MB‐231 cells by garcinol. Down‐regulation of NF‐κB signaling pathway was observed to be the mechanism of apoptosis‐induction. Garcinol inhibited constitutive NF‐κB activity, which was consistent with down‐regulation of NF‐κB‐regulated genes. This is the first report on anti‐proliferative and apoptosis‐inducing action of garcinol against human breast cancer cells and the results suggest that this natural compound merits investigation as a potential chemo‐preventive/‐therapeutic agent, especially against breast cancer. J. Cell. Biochem. 109: 1134–1141, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号