首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathogen infection can induce plant volatile organic compounds (VOCs). We infected ‘McNeal’ wheat and ‘Harrington’ barley with a Fusarium spp. blend (F. graminearum,F. avenaceum and F. culmorum). Both cereals had the greatest VOC induction 14 days after pathogen innoculation, only slightly lower induction occurred at 7 days, but displayed no induction at 1 days. The induced VOC bouquet for both cereals included six green leaf volatiles (GLVs; e.g. (Z)‐3‐hexenol and (Z)‐3‐hexenyl acetate), four terpenes (linalool, linalool oxide, (Z)‐β‐ocimene and (E)‐β‐caryophyllene) and benzyl acetate. Neighbouring, uninfected individuals of both cereals had significant VOC induction when exposed to an infected, conspecific plant. The temporal pattern and VOC blend were qualitatively similar to infected plants but with quantitative reductions for all induced VOCs. The degree of neighbouring, uninfected plant induction was negatively related to distance from an infected plant. Plant VOC induction in response to pathogen infection potentially influences herbivore attraction or repellency. Y‐tube tests showed that herbivorous female and male Oulema cyanella Voet. (Chrysomelidae: Coleoptera) were significantly attracted to (Z)‐3‐hexenal and (Z)‐3‐hexenyl acetate at 300 and 1500 ng/h but were repelled by both GLVs as well as (Z)‐β‐ocimene and linalool at 7500 ng/h. These O. cyanella behavioural responses were significantly at higher concentrations than those emitted by single plants with pathogen‐induced VOCs, so adults might only be able to respond to a dense group of infected plants. Also, O. cyanella dose responses differ from the previously tested congeneric O. melanopus (cereal leaf beetle), which was attracted to three VOCs induced by Fusarium infection of maize, barley and wheat. Future behavioural tests may indicate whether different herbivore dose responses measured with each VOC singly can help to predict attraction or repellency to injured and uninjured VOC bouquets from different host plant species.  相似文献   

2.
The compounds responsible for highly individual aroma profile of Coriandrum sativum L. honey were isolated by headspace solid‐phase microextraction (HS‐SPME; used fibers: A: polydimethylsiloxane (PDMS)/divinylbenzene (DVB) and B: divinylbenzene/carboxen/polydimethylsiloxane), as well as ultrasonic solvent extraction (USE; used solvents: A: pentane/Et2O 1 : 2 (v/v) and B: CH2Cl2) and analyzed by gas chromatography (GC) and mass spectrometry (MS). Unusual chromatographic profiles were obtained containing derivatives of linalool/oxygenated methoxybenzene. trans‐Linalool oxide (11.1%; 14.6%) dominated in the headspace, followed by other linalool derivatives (such as cis/trans‐anhydrolinalool oxide (5.0%; 5.9%), isomers of lilac aldehyde/alcohol (14.9%; 13.8%) or p‐menth‐1‐en‐9‐al (15.6%; 18.5%)), octanal, and several low‐molecular‐weight esters. The major compounds in the solvent extracts were oxygenated methoxybenzene derivatives such as 3,4,5‐trimethoxybenzyl alcohol (26.3%; 24.7%), methyl syringate (23.8%; 11.7%), and 3,4‐dimethoxybenzyl alcohol (5.6%; 13.9%). Another group of abundant compounds in the extracts were derivatives of linalool (e.g., (E)/(Z)‐2,6‐dimethylocta‐2,7‐diene‐1,6‐diol (17.8%; 16.1%)). Among the compounds identified, cis/trans‐anhydrolinalool oxides and 3,4,5‐trimethoxybenzyl alcohol can be useful as chemical markers of coriander honey.  相似文献   

3.
This study aimed to characterize the chemical composition of Aloysia polystachia, Acantholippia seriphioides, Schinus molle, Solidago chilensis, Lippia turbinata, Minthostachys mollis, Buddleja globosa, and Baccharis latifolia essential oils (EOs), and to evaluate their antibacterial activities and their capacity to provoke membrane disruption in Paenibacillus larvae, the bacteria that causes the American Foulbrood (AFB) disease on honey bee larvae. The relationship between the composition of the EOs and these activities on Plarvae was also analyzed. Monoterpenes were the most abundant compounds in all EOs. All EOs showed antimicrobial activity against Plarvae and disrupted the cell wall and cytoplasmic membrane of Plarvae provoking the leakage of cytoplasmic constituents (with the exception of Blatifolia EO). While, the EOs’ antimicrobial activity was correlated most strongly to the content of pulegone, carvone, (Z)‐β‐ocimene, δ‐cadinene, camphene, terpinen‐4‐ol, elemol, β‐pinene, β‐elemene, γ‐cadinene, α‐terpineol, and bornyl acetate; the volatiles that better explained the membrane disruption were carvone, limonene, cis‐carvone oxide, pentadecane, trans‐carvyl acetate, trans‐carvone oxide, trans‐limonene oxide, artemisia ketone, trans‐carveol, thymol, and γ‐terpinene (positively correlated) and biciclogermacrene, δ‐2‐carene, verbenol, α‐pinene, and α‐thujene (negatively correlated). The studied EOs are proposed as natural alternative means of control for the AFB disease.  相似文献   

4.
To determine what factors limit the growth of wild Fritillaria cirrhosa and Fritillaria delavayi in field conditions, we investigated diurnal changes of the net photosynthetic rate (P N) and the correlation between P N and various environmental factors. Parameters of chlorophyll (Chl) fluorescence were evaluated to test whether ecological fragility caused the extinction of wild F. cirrhosa and F. delavayi. Our study reveals for the first time that F. cirrhosa and F. delavayi did not encounter significant stress under field conditions. A small reduction in maximum photochemical efficiency was observed under high irradiance. The maximum P N of F. cirrhosa was 30 % higher than F. delavayi (p<0.05), and a similar difference was observed for apparent quantum yield (27.3 %, p<0.01). F. delavayi was better adapted to a wide range of irradiances and high environmental temperature. Correlation between P N and environmental factors (without considering the effects of interactions among environmental factors on P N) using leaves of F. cirrhosa revealed that the three primary influencing factors were air pressure (p<0.01), relative humidity (p<0.01), and soil temperature (p<0.05). In F. delavayi, the influencing factors were relative humidity (p<0.01), soil temperature (p<0.05), CO2 concentration (p<0.05), and air pressure (p<0.05). Path analysis (considering effects among environmental factors on P N) showed that air temperature (negative correlation), photosynthetic photon flux density (PPFD) and relative humidity were the three primary limiting factors influencing the growth of F. cirrhosa. For this species, relative humidity reacted indirectly with air pressure, which was reported singularly in other species. Limiting growth factors for F. delavayi were PPFD, air pressure (negative correlation), soil temperature (negative correlation) and air temperature (negative correlation).  相似文献   

5.
Phaeanthus vietnamensis Bân is a well‐known medicinal plant which has been used for the treatment of various inflammatory diseases in traditional medicine. Using various chromatographic methods, three new compounds, (7S,8R,8′R)‐9,9′‐epoxy‐3,5,3′,5′‐tetramethoxylignan‐4,4′,7‐triol ( 1 ), 8α‐hydroxyoplop‐11(12)‐en‐14‐one ( 5 ), and (1R,2S,4S)‐4‐acetyl‐2‐[(E)‐(cinnamoyloxy)]‐1‐methylcyclohexan‐1‐ol ( 12 ) along with twelve known compounds were isolated from the leaves of Pvietnamensis. Their chemical structures were elucidated by physical and chemical methods. All compounds were evaluated for the inhibitory activities of nitric oxide production in LPS‐stimulated BV2 cells. As the results, compound 6 showed the most potent inhibitory activity on LPS‐stimulated NO production in BV2 cells with the IC50 values of 15.7 ± 1.2 μm . Compounds 2 , 7 , and 8 significantly inhibited inflammatory NO production with IC50 values ranging from 22.6 to 25.3 μm .  相似文献   

6.
The sex pheromone of the cloaked pug moth, Eupithecia abietaria Götze, an important cone‐feeding pest in spruce seed orchards in Europe, was investigated. Chemical and electrophysiological analyses of pheromone gland extracts of female moths and analogous analyses of synthetic hydrocarbons and epoxides of chain length C19 and C21 revealed (3Z,6Z,9Z)‐3,6,9‐nonadecatriene (3Z,6Z,9Z‐19:H) and 3Z,6Zcis‐9,10‐epoxynonadecadiene (3Z,6Zcis‐9,10‐epoxy‐19:H) as candidate pheromone components, which were found in a gland extract in a ratio of 95 : 5. In field trapping experiments, conspecific males were only attracted to a combination of 3Z,6Z,9Z‐19:H and the (9S,10R)‐enantiomer of 3Z,6Zcis‐9,10‐epoxy‐19:H. The (9R,10S)‐enantiomer was not attractive, which is in agreement with studies on other Eupithecia species, for which males have only been attracted by the (9S,10R)‐enantiomer of epoxides. Subsequent experiments showed that E. abietaria males were attracted to a wide range of ratios of the two active compounds and that trap catches increased with increasing dose of the binary blend. A two‐component bait containing 300 μg 3Z,6Z,9Z‐19:H and 33 μg of the (9S,10R)‐enantiomer of 3Z,6Zcis‐9,10‐epoxy‐19:H was efficient for monitoring E. abietaria in spruce seed orchards in southern Sweden, where this species has probably been overlooked as an important pest in the past. With sex pheromones recently identified for two other moths that are major pests on spruce cones, the spruce seed moth, Cydia strobilella L., and the spruce coneworm, Dioryctria abietella Denis & Schiffermüller, pheromone‐based monitoring can now be achieved for the whole guild of cone‐feeding moths in European spruce seed orchards.  相似文献   

7.
Forty‐two essential oil samples were isolated from leaves of Xylopia rubescens harvested in three forests of Southern Ivory Coast. All the samples have been submitted to GC‐FID and the retention indices (RIs) of individual components have been measured on two capillary columns of different polarity. In addition, 20 oil samples, selected on the basis of their chromatographic profile, were also analyzed by 13C‐NMR and 24 components (78.0 – 92.4% of the whole compositions) have been identified. The content of the main components varied drastically from sample to sample: furanoguaia‐1,4‐diene (5.7 – 54.1%), furanoguaia‐1,3‐diene (1.1 – 10.5%), (8Z,11Z,14Z)‐heptadeca‐8,11,14‐trien‐2‐one (4.3 – 16.0%), and (E)‐β‐caryophyllene (1.7 – 17.3%). Hierarchical cluster and principal components analysis of the 42 oil compositions allowed the distinction of two well‐differentiated groups of unequal importance within the oil samples. Oil samples of the main group (Group II) contained mainly furanoguaia‐1,4‐diene (mean [M] = 43.1%; standard deviation [SD] = 3.2%) while furanoguaia‐1,3‐diene (M = 8.4%; SD = 0.9%) and (8Z,11Z,14Z)‐heptadeca‐8,11,14‐trien‐2‐one (M = 7.1%; SD = 1.5%) were present at appreciable contents. The composition of Group I was dominated by furanoguaia‐1,4‐diene (M = 17.0%; SD = 8.5%), (8Z,11Z,14Z)‐heptadeca‐8,11,14‐trien‐2‐one (M = 10.2%; SD = 2.4%) and (E)‐β‐caryophyllene (M = 9.5%; SD = 5.3%).  相似文献   

8.
Seasonal effects of environmental variables on photosynthetic activity and secondary xylem formation provide data to demonstrate how environmental factors together with leaf ageing during the season control tree growth. In this study, we assessed physiological responses in photosynthetic behaviour to seasonal climate changes, and also identified seasonal differences in vascular traits within differentiating secondary xylem tissue from three diploid species of the taxonomically complex genus Sorbus. From sampling day 150, a clear physiological segregation of S. chamaemespilus from S. torminalis and S. aria was evident. The shrubby species S. chamaemespilus could be distinguished by a higher photosynthetic capacity between days 150 and 206. This was reflected in its associations with net CO2 assimilation rate (PN), maximum photochemical efficiency of PSII (Fv/Fm), variable‐to‐initial fluorescence ratio (Fv/F0), potential electron acceptor capacity (‘area’) in multivariate space, and also its associations with log‐transformed vessel area and log‐transformed relative conductivity between days 239 and 268. The maximum segregation and differentiation among the examined Sorbus species was on sampling day 206. The largest differences between S. torminalis and S. aria were found on day 115, when the latter species clearly showed closer associations with high values of vessel density and transpiration (E). Sampling day clusters were arranged along an arch‐like gradient that reflected the positioning of the entire growing season in multivariate space. This arch‐like pattern was most apparent in the case of S. chamaemespilus, but was also observed in S. torminalis and S. aria.  相似文献   

9.
The impact of growth stages during vegetative cycle (B0 – B5) on chemical composition and antioxidant activities of Pinus halepensis Mill . needles essential oils was investigated for the first time. GC and GC/MS analyses pointed to a quantitative variability of components; terpene hydrocarbons derivatives, represented by α‐pinene (8.5 – 12.9%), myrcene (17.5 – 21.6%), p‐cymene (7.9 – 11.9%) and (Z)‐β‐caryophyllene (17.3 – 21.2%) as major components, decreased from 88.9% at B0 growth stage to 66.9% at B5 growth stage, whereas oxygenated derivatives, represented by caryophyllene oxide (5.4 – 12.6%) and terpinen‐4‐ol (0.4 – 3.3%) as major components, increased from 7% at B0 growth stage to 28.4% at B5 growth stage. Furthermore, our findings showed that essential oil of P. halepensis needles collected at B5 growth stage possess higher antioxidant activities by four different testing systems than those collected at B0 – B4 growth stages. This highlighted variability led to conclude that we should select essential oils to be investigated carefully depending on growth stage, in order to have the highest effectiveness of essential oil in terms of biological activities for human health purposes.  相似文献   

10.
Identification of host volatile compounds attractive to codling moth Cydia pomonella, a most important insect of apple, will contribute to the development of safe control techniques. Synthetic apple volatiles in two doses were tested for antennal and behavioural activity in codling moth. Female antennae strongly responded to (Z)3‐hexenol, (Z)3‐hexenyl benzoate, (Z)3‐hexenyl hexanoate, (±)‐linalool and E,Eα‐farnesene. Two other compounds eliciting a strong antennal response were the pear ester, ethyl (E,Z)‐2,4‐decadienoate, and its corresponding aldehyde, E,E‐2,4‐decadienal, which is a component of the larval defence secretion of the European apple sawfly. Attraction of codling moth to compounds eliciting a strong antennal response was tested in a wind tunnel. Male moths were best attracted to a blend of (E,E)‐α‐farnesene, (E)‐beta‐farnesene and ethyl (E,Z)‐2,4‐decadienoate. The aldehyde E,E‐2,4‐decadienal had an antagonistic effect when added to the above mixture.  相似文献   

11.
We analysed phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth on the basis of published data from 54 lakes and reservoirs in different climate regions around the world. Our analysis demonstrated that reservoirs and lakes that received higher areal loading of phosphorus (TPin) also retained more P per m2 but the proportion of the external P loading retained in the waterbody (retention coefficient, R P) remained generally independent of TPin. The waterbodies with longer hydraulic residence times (T R) retained larger proportions of external P and the correlation between R P and T R was much stronger in lakes with areas larger than 25 km2 than in the whole data set. TPin and T R together determined 78% of the variation in R P in large lakes. We also partially confirmed our hypothesis that waterbodies with bigger relative depths (Z R) retain more of the external phosphorus than larger and shallower waterbodies with lower Z R. The hypothesis was, however, validated only for lakes larger than 25 km2 and for those with T R <0.3 year, where R P increased significantly with increasing Z R. In stratified lakes, increasing relative depth correlated with reduced P retention capacity, demonstrating the complex nature of phosphorus biogeochemistry in lake ecosystems.  相似文献   

12.
13.
Tropical plants are sensitive to chilling temperatures above zero but it is still unclear whether photosystem I (PSI) or photosystem II (PSII) of tropical plants is mainly affected by chilling temperatures. In this study, the effect of 4°C associated with various light densities on PSII and PSI was studied in the potted seedlings of four tropical evergreen tree species grown in an open field, Khaya ivorensis, Pometia tomentosa, Dalbergia odorifera, and Erythrophleum guineense. After 8 h chilling exposure at the different photosynthetic flux densities of 20, 50, 100, 150 μmol m−2 s−1, the maximum quantum yield of PSII (F v /F m) in all of the four species decreased little, while the quantity of efficient PSI complex (P m) remained stable in all species except E. guineense. However, after chilling exposure under 250 μmol m−2 s−1 for 24 h, F v /F m was severely photoinhibited in all species whereas P m was relative stable in all plants except E. guineense. At the chilling temperature of 4°C, electron transport from PSII to PSI was blocked because of excessive reduction of primary electron acceptor of PSII. F v /F m in these species except E. guineense recovered to ~90% after 8 h recovery in low light, suggesting the dependence of the recovery of PSII on moderate PSI and/or PSII activity. These results suggest that PSII is more sensitive to chilling temperature under the moderate light than PSI in tropical trees, and the photoinhibition of PSII and closure of PSII reaction centers can serve to protect PSI.  相似文献   

14.
The red macroalgae Hydropuntia cornea, Gracilariopsis longissima and Halopithys incurva were cultured for 14 d under laboratory conditions, in enriched seawater with a high nutrient content (N‐NH4+ and P‐PO43?) and two radiation regimes: PAR (400–700 nm) and PAB (280–700 nm). The UV radiation effects under high availability of nutrients on growth, photosynthetic pigments (chlorophyll a, carotenoids and phycobiliproteins), photosynthetic activity and biochemical composition were studied. Maximum quantum yield (Fv/Fm) was not significantly different among the PAR and PAB treatments during the experiment. However, the maximum electronic transport rate (ETRmax) increased over time, showing the highest values in PAR for H. incurva and H. cornea, whereas for G. longissima it was found in PAB. Photosynthetic efficiency (αETR) decreased over time in the first two species, but increased in G. longissima. Saturation irradiance (EkETR) and maximum nonphotochemical quenching (NPQmax) increased in PAB with time up to 80% and 30%, respectively, indicating a photosynthetic acclimatization like that of sun‐type algae. Five MAAs were identified in all species using high performance liquid chromatography (HPLC). The total content of MAAs increased over time, being 30% higher in H. incurva, 40% in G. longissima and 50% in H. cornea in PAB than in the PAR treatment. Finally, the antioxidant activity was also higher in the PAB treatment. All of the species presented an effective mechanism of photoprotection based on the accumulation of photoprotective compounds with antioxidant activity, as well as a high dissipation of excitation energy (high NPQmax).  相似文献   

15.
We investigated the relationships of photosynthetic capacity (P nsat, near light-saturated net photosynthetic rate measured at 1,200 μmol m−2 s−1 PPFD) to photosystem II efficiency (F v/F m) and to photochemical reflectance index [PRI = (R 531 − R 570)/(R 531 + R 570)] of Pinus taiwanensis Hay. needles at high (2,600 m a.s.l) and low-elevation (800 m a.s.l) sites through different seasons. Results indicate that at high-elevation site, P nsat, F v/F m and PRI (both measured at predawn) paralleled in general with the air temperature. On the coolest measuring day with the minimum air temperature dropping to −2°C, P nsat could decrease to ca. 15% of its highest value, which was measured in autumn. At low-elevation site, with the minimum air temperature of 10–12°C in cooler season and almost no seasonal variation of F v/F m, P nsat dropped to ca. 65% of its highest value and PRI decreased ca. 0.02 in winter. Even though seasonal variation of P nsat was affected by many factors, it was still closely related to PRI based on statistical analyses using data from both sites, through different seasons. On the contrary, seasonal variation of F v/F m of P. taiwanensis needles was influenced mainly by low temperature at high elevation. Therefore, the correlation of P nsat − F v/F m was lower than that of P nsat − PRI when data combined from both high- and low-elevation sites were analyzed. It is concluded that predawn PRI could be used as an indicator to estimate the seasonal potential of photosynthetic capacity of P. taiwanensis grown at low- and high-elevations of sub-tropical Taiwan.  相似文献   

16.
The endophytic fungal community associated with the ethnomedicinal plant Echinacea purpurea was investigated as well as its potential for providing antifungal compounds against plant pathogenic fungi. A total of 233 endophytic fungal isolates were obtained and classified into 42 different taxa of 16 genera, of which Alternaria alternata, Colletotrichum dematium, and Stagonosporopsis sp. 2 are the most frequent colonizers. The extracts of 29 endophytic fungi displayed activities against important phytopathogenic fungi. Eight antifungal extracts were selected for chemical analysis. Forty fatty acids were identified by gas chromatography‐flame‐ionization detection (GC‐FID) analysis. The compounds (–)‐5‐methylmellein and (–)‐(3R)‐8‐hydroxy‐6‐methoxy‐3,5‐dimethyl‐3,4‐dihydroisocoumarin were isolated from Biscogniauxia mediterraneaEPU38CA crude extract. (–)‐5‐Methylmellein showed weak activity against Phomopsis obscurans, Pviticola, and Fusarium oxysporum, and caused growth stimulation of C. fragariae, C. acutatum, C. gloeosporioides, and Botrytis cinerea. (–)‐(3R)‐8‐Hydroxy‐6‐methoxy‐3,5‐dimethyl‐3,4‐dihydroisocoumarin appeared slightly more active in the microtiter environment than 5‐methylmellein. Our results indicate that E. purpurea lives symbiotically with different endophytic fungi, which are able to produce bioactive fatty acids and aromatic compounds active against important phytopathogenic fungi. The detection of the different fatty acids and aromatic compounds produced by the endophytic community associated with wild E. purpurea suggests that it may have intrinsic mutualistic resistance against phytopathogen attacks in its natural environment.  相似文献   

17.
The paper reports a study involving the use of Halomonas boliviensis, a moderate halophile, for co-production of compatible solute ectoine and biopolyester poly(3-hydroxybutyrate) (PHB) in a process comprising two fed-batch cultures. Initial investigations on the growth of the organism in a medium with varying NaCl concentrations showed the highest level of intracellular accumulation of ectoine (0.74 g L−1) at 10–15% (w/v) NaCl, while at 15% (w/v) NaCl, the presence of hydroxyectoine (50 mg L−1) was also noted. On the other hand, the maximum cell dry weight and PHB concentration of 10 and 5.8 g L−1, respectively, were obtained at 5–7.5% (w/v) NaCl. A process comprising two fed-batch cultivations was developed—the first culture aimed at obtaining high cell mass and the second for achieving high yields of ectoine and PHB. In the first fed-batch culture, H. boliviensis was grown in a medium with 4.5% (w/v) NaCl and sufficient levels of monosodium glutamate, NH4+, and PO43−. In the second fed-batch culture, the NaCl concentration was increased to 7.5% (w/v) to trigger ectoine synthesis, while nitrogen and phosphorus sources were fed only during the first 3 h and then stopped to favor PHB accumulation. The process resulted in PHB yield of 68.5 wt.% of cell dry weight and volumetric productivity of about 1 g L−1 h−1 and ectoine concentration, content, and volumetric productivity of 4.3 g L−1, 7.2 wt.%, and 2.8 g L−1 day−1, respectively. At salt concentration of 12.5% (w/v) during the second cultivation, the ectoine content was increased to 17 wt.% and productivity to 3.4 g L−1 day−1.  相似文献   

18.
Due to anthropogenic influences, solar UV-B irradiance at the earth’s surface is increasing. To determine the effects of enhanced UV-B radiation on photosynthetic characteristics of Prunus dulcis, two-year-old seedlings of the species were submitted to four levels of UV-B stress, namely 0 (UV-Bc), 4.42 (UV-B1), 7.32 (UV-B2) and 9.36 (UV-B3) kJ m−2 d−1. Effects of UV-B stress on a range of chlorophyll (Chl) fluorescence parameters (FPs), Chl contents and photosynthetic gas-exchange parameters were investigated. UV-B stress promoted an increase in minimal fluorescence of dark-adapted state (F0) and F0/Fm, and a decrease in variable fluorescence (Fv, Fv/Fm, Fv/F0 and F0/Fm) due to its adverse effects on photosystem II (PSII) activity. No significant change was observed for maximal fluorescence of dark-adapted state (Fm). Enhanced UV-B radiation caused a significant inhibition of net photosynthetic rate (P N) at UV-B2 and UV-B3 levels and this was accompanied by a reduction in stomatal conductance (g s) and transpiration rate (E). The contents of Chl a, b, and total Chl content (a+b) were also significantly reduced at increased UV-B stress. In general, adverse UV-B effects became significant at the highest tested radiation dose 9.36 kJ m−2 d−1. The most sensitive indicators for UV-B stress were Fv/F0, Chl a content and P N. Significant P<0.05 alteration in these parameters was found indicating the drastic effect of UV-B radiation on P. dulcis.  相似文献   

19.
It is known that some plant essential oils have pesticide activities. Among the 29 oils evaluated in this study, 14 showed nematicidal activities of 8 to 100% at the concentration of 1,000 μg/ml, compared with a control of 0.01 g/ml Tween 80®. At a lower concentration of 500 μg/ml, only Dysphania ambrosioides oil caused >90% mortality of second‐stage juveniles (J2) of Meloidogyne incognita. The LC50 and LC95 values for D. ambrosioides oil were 307 μg/ml and 580 μg/ml, respectively. M. incognita eggs placed in D. ambrosioides oil solutions had a significant reduction in J2 hatching compared with controls. Therefore, the oil had a toxic effect on both eggs and J2 of M. incognita. This was in contrast to nematicides on the market that act efficiently only on J2. When J2 were placed in D. ambrosioides oil at its LC50 concentration and inoculated onto tomato plants, the reduction in numbers of galls and eggs was 99.5% and 100%, respectively. Dysphania ambrosioides oil applied to the potting substrate of plants at a concentration of 1,100 μg/ml significantly reduced the number of galls and eggs of M. incognita, whereas a concentration of 800 μg/ml only reduced the number of eggs compared with the controls (Tween 80® and water). The main components of the D. ambrosioides oil detected by gas chromatography–mass spectrometry were (Z)‐ascaridole (87.28%), E‐ascaridole (8.45%) and p‐cymene (3.35%), representing 99.08% of the total oil composition. Given its nematicidal activity, D. ambrosioides oil represents an exciting raw material in the search for new bioactive molecules for the pesticide industry.  相似文献   

20.
Four oils from Piper nigrum, Litsea cubeba, Zanthoxylum bungeanum and Curcuma longa were obtained by ethanol extraction. The repellency of these oils and two major compounds (linalool and piperine) was evaluated against female adult and third‐instar nymphs of the rice pest, Nephotettix cincticeps, under laboratory and glasshouse conditions. Paired‐choice and no‐choice assays were used for each treatment, with essential oils evaluated after 24 and 48 hr of exposure and chemical compounds evaluated after 12 and 24 hr of exposure. The potential effects of essential oils on activities of glutathione S tranferase (GST), carboxyl esterase (CarE) and acetyl cholinesterase (AchE) were also evaluated after 48 hr of exposure to leafhoppers. The constituents of the essential oils were determined using GC‐MS. The results showed that the major components in the oils were piperine (34.75%) for P. nigrum, 9,12‐octadecadienoic acid (Z,Z) (18.74%) for L. cubeba, ethanone, 1‐(2‐hydroxy‐4,6‐dimethoxyphenyl) (18.51%) for Z. bungeanum and turmerone (15.89%) for C. longa. In all cases, the essential oils repelled female adults and third‐instar nymphs of N. cincticeps. The repellency of the tested oils and chemicals compounds in the paired‐choice assay was higher than in the no‐choice assay. In all experimental conditions, P. nigrum and C. longa oils were the most and the least potent, respectively. Linalool was the best repellent among the single‐tested compounds under laboratory conditions. In the glasshouse study, the highest repellency was observed in the mixture of linalool and piperine. GST and CarE activities of leafhoppers were significantly enhanced by exposure to the four essentials oils; AchE activity increased significantly only in the P. nigrum and L. cubeba assays. Our results clearly indicate that the tested oils and chemical compounds are promising agents for developing plant‐based pesticides to control N. cincticeps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号