首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

2.
3.
4.
5.

Objective:

Interleukin‐1β (IL‐1β) has recently been implicated as a major cytokine that is involved in the pancreatic islet inflammation of type 2 diabetes mellitus. This inflammation impairs insulin secretion by inducing beta‐cell apoptosis. Recent evidence has suggested that in obesity‐induced inflammation, IL‐1β plays a key role in causing insulin resistance in peripheral tissues.

Design and Methods:

To further investigate the pathophysiological role of IL‐1β in causing insulin resistance, the inhibitory effects of IL‐1β on several insulin‐dependent metabolic processes in vitro has been neutralized by XOMA 052. The role IL‐1β plays in insulin resistance in adipose tissue was assessed using differentiated 3T3‐L1 adipocytes and several parameters involved in insulin signaling and lipid metabolism were examined.

Results and Conclusion:

IL‐1β inhibited insulin‐induced activation of Akt phosphorylation, glucose transport, and fatty acid uptake. IL‐1β also blocked insulin‐mediated downregulation of suppressor of cytokine signaling‐3 expression. Co‐preincubation of IL‐1β with XOMA 052 neutralized nearly all of these inhibitory effects in 3T3‐L1 adipocytes. These studies provide evidence, therefore, that IL‐1β is a key proinflammatory cytokine that is involved in inducing insulin resistance. These studies also suggest that the monoclonal antibody XOMA 052 may be a possible therapeutic to effectively neutralize cytokine‐mediated insulin resistance in adipose tissue.  相似文献   

6.
7.
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes.  相似文献   

8.
Chiral sulfoxides/N‐oxides (R)‐ 1 and (R,R)‐ 2 are effective chiral promoters in the enantioselective allylation of α‐keto ester N‐benzoylhydrazone derivatives 3a , 3b , 3c , 3d , 3e , 3f , 3g to generate the corresponding N‐benzoylhydrazine derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a , 4b were subsequently treated with SmI2, and the resulting amino esters 5a , 5b with LiOH to obtain quaternary α‐substituted α‐allyl α‐amino acids 6a , 6b , whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. Chirality 25:529–540, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
10.
11.
Galectin‐1/LGALS1, a newly recognized angiogenic factor, contributes to the pathogenesis of diabetic retinopathy (DR). Recently, we demonstrated that glucocorticoids suppressed an interleukin‐1β‐driven inflammatory pathway for galectin‐1 expression in vitro and in vivo. Here, we show glucocorticoid‐mediated inhibitory mechanism against hypoxia‐inducible factor (HIF)‐1α‐involved galectin‐1 expression in human Müller glial cells and the retina of diabetic mice. Hypoxia‐induced increases in galectin‐1/LGALS1 expression and promoter activity were attenuated by dexamethasone and triamcinolone acetonide in vitro. Glucocorticoid application to hypoxia‐stimulated cells decreased HIF‐1α protein, but not mRNA, together with its DNA‐binding activity, while transactivating TSC22 domain family member (TSC22D)3 mRNA and protein expression. Co‐immunoprecipitation revealed that glucocorticoid‐transactivated TSC22D3 interacted with HIF‐1α, leading to degradation of hypoxia‐stabilized HIF‐1α via the ubiquitin‐proteasome pathway. Silencing TSC22D3 reversed glucocorticoid‐mediated ubiquitination of HIF‐1α and subsequent down‐regulation of HIF‐1α and galectin‐1/LGALS1 levels. Glucocorticoid treatment to mice significantly alleviated diabetes‐induced retinal HIF‐1α and galectin‐1/Lgals1 levels, while increasing TSC22D3 expression. Fibrovascular tissues from patients with proliferative DR demonstrated co‐localization of galectin‐1 and HIF‐1α in glial cells partially positive for TSC22D3. These results indicate that glucocorticoid‐transactivated TSC22D3 attenuates hypoxia‐ and diabetes‐induced retinal glial galectin‐1/LGALS1 expression via HIF‐1α destabilization, highlighting therapeutic implications for DR in the era of anti‐vascular endothelial growth factor treatment.  相似文献   

12.
It was shown that racemic (±)‐ 2 [1′‐benzyl‐3‐(3‐fluoropropyl)‐3H‐spiro[[2]benzofuran‐1,4′‐piperidine], WMS‐1813 ] represents a promising positron emission tomography (PET) tracer for the investigation of centrally located σ1 receptors. To study the pharmacological activity of the enantiomers of 2 , a preparative HPLC separation of (R)‐2 and (S)‐2 was performed. The absolute configuration of the enantiomers was determined by CD‐spectroscopy together with theoretical calculations of the CD‐spectrum of a model compound. In receptor binding studies with the radioligand [3H]‐(+)‐pentazocine, (S)‐2 was thrice more potent than its (R)‐configured enantiomer (R)‐2 . The metabolic degradation of the more potent (S)‐enantiomer was considerably slower than the metabolism of (R)‐2 . The structures of the main metabolites of both enantiomers were elucidated by determination of the exact mass using an Orbitrap‐LC‐MS system. These experiments showed a stereoselective biotransformation of the enantiomers of 2 . Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
15.
16.
The proteins of 14‐3‐3 family are substantially involved in the regulation of many biological processes including the apoptosis. We studied the changes in the expression of five 14‐3‐3 isoforms (β, γ, ε, τ, and ζ) during the apoptosis of JURL‐MK1 and K562 cells. The expression level of all these proteins markedly decreased in relation with the apoptosis progression and all isoforms underwent truncation, which probably corresponds to the removal of several C‐terminal amino acids. The observed 14‐3‐3 modifications were partially blocked by caspase‐3 inhibition. In addition to caspases, a non‐caspase protease is likely to contribute to 14‐3‐3's cleavage in an isoform‐specific manner. While 14‐3‐3 γ seems to be cleaved mainly by caspase‐3, the alternative mechanism is essentially involved in the case of 14‐3‐3 τ, and a combined effect was observed for the isoforms ε, β, and ζ. We suggest that the processing of 14‐3‐3 proteins could form an integral part of the programmed cell death or at least of some apoptotic pathways. J. Cell. Biochem. 106: 673–681, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
True bugs (Hemiptera) are an important pest complex not controlled by Bt‐transgenic crops. An alternative source of resistance includes inhibitors of digestive enzymes, such as protease or amylase inhibitors. αAI‐1, an α‐amylase inhibitor from the common bean, inhibits gut‐associated α‐amylases of bruchid pests of grain legumes. Here we quantify the in vitro activity of α‐amylases of 12 hemipteran species from different taxonomic and functional groups and the in vitro inhibition of those α‐amylases by αAI‐1. α‐Amylase activity was detected in all species tested. However, susceptibility to αAI‐1 varied among the different groups. α‐Amylases of species in the Lygaeidae, Miridae and Nabidae were highly susceptible, whereas those in the Auchenorrhyncha (Cicadellidae, Membracidae) had a moderate susceptibility, and those in the Pentatomidae seemed to be tolerant to αAI‐1. The species with αAI‐1 susceptible α‐amylases represented families which include both important pest species but also predatory species. These findings suggest that αAI‐1‐expressing crops have potential to control true bugs in vivo.  相似文献   

18.
Interferon (IFN)‐γ‐induced protein 10 (IP‐10/CXCL10), a CXC chemokine, has been documented in several inflammatory and autoimmune disorders including atopic dermatitis and bronchial asthma. Although CXCL10 could be induced by IFN‐γ depending on cell type, the mechanisms regulating CXCL10 production following treatment with combination of IFN‐γ and TNF‐α have not been adequately elucidated in human monocytes. In this study, we showed that TNF‐α had more potential than IFN‐γ to induce CXCL10 production in THP‐1 monocytes. Furthermore, IFN‐γ synergistically enhanced the production of CXCL10 in parallel with the activation of NF‐κB in TNF‐α‐stimulated THP‐1 cells. Blockage of STAT1 or NF‐κB suppressed CXCL10 production. JAKs inhibitors suppressed IFN‐γ plus TNF‐α‐induced production of CXCL10 in parallel with activation of STAT1 and NF‐κB, while ERK inhibitor suppressed production of CXCL10 as well as activation of NF‐κB, but not that of STAT1. IFN‐γ‐induced phosphorylation of JAK1 and JAK2, whereas TNF‐α induced phosphorylation of ERK1/2. Interestingly, IFN‐γ alone had no effect on phosphorylation and degradation of IκB‐α, whereas it significantly promoted TNF‐α‐induced phosphorylation and degradation of IκB‐α. These results suggest that TNF‐α induces CXCL10 production by activating NF‐κB through ERK and that IFN‐γ induces CXCL10 production by increasing the activation of STAT1 through JAKs pathways. Of note, TNF‐α‐induced NF‐κB may be the primary pathway contributing to CXCL10 production in THP‐1 cells. IFN‐γ potentiates TNF‐α‐induced CXCL10 production in THP‐1 cells by increasing the activation of STAT1 and NF‐κB through JAK1 and JAK2. J. Cell. Physiol. 220: 690–697, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Interleukin 17 (IL‐17) is an important inducer of tissue inflammation and is involved in numerous autoimmune diseases. However, how its signal transduction is regulated is not well understood. Here, we report that nuclear Dbf2‐related kinase 1 (NDR1) functions as a positive regulator of IL‐17 signal transduction and IL‐17‐induced inflammation. NDR1 deficiency or knockdown inhibits the IL‐17‐induced phosphorylation of p38, ERK1/2, and p65 and the expression of chemokines and cytokines, whereas the overexpression of NDR1 promotes IL‐17‐induced signaling independent of its kinase activity. Mechanistically, NDR1 interacts with TRAF3 and prevents its binding to IL‐17R, which promotes the formation of an IL‐17R‐Act1‐TRAF6 complex and downstream signaling. Consistent with this, IL‐17‐induced inflammation is significantly reduced in NDR1‐deficient mice, and NDR1 deficiency significantly protects mice from MOG‐induced experimental autoimmune encephalomyelitis (EAE) and 2,4,6‐trinitrobenzenesulfonic acid (TNBS)‐induced colitis likely by its inhibition of IL‐17‐mediated signaling pathway. NDR1 expression is increased in the colons of ulcerative colitis (UC) patients. Taken together, these findings suggest that NDR1 is involved in the development of autoimmune diseases.  相似文献   

20.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号