首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PI3K/Akt/mTOR signaling pathway is critical for cellular growth and survival in skeletal muscle, and is activated in response to growth factors such as insulin-like growth factor-I (IGF-I). We found that in C2C12 myoblasts, deficiency of PI3K p110 catalytic subunits or Akt isoforms had distinct effects on phosphorylation of mTOR and p70S6K. siRNA-mediated knockdown of PI3K p110α, p110β, and simultaneous knockdown of p110α and p110β resulted in increased basal and IGF-I-stimulated phosphorylation of mTOR S2448 and p70S6K T389; however, phosphorylation of S6 was reduced in p110β-deficient cells, possibly due to reductions in total S6 protein. We found that IGF-I-stimulated Akt1 activity was enhanced in Akt2- or Akt3-deficient cells, and that knockdown of individual Akt isoforms increased mTOR/p70S6K activation in an isoform-specific fashion. Conversely, levels of IGF-I-stimulated p70S6K phosphorylation in cells simultaneously deficient in both Akt1 and Akt3 were increased beyond those seen with loss of any single Akt isoform, suggesting an alternate, Akt-independent mechanism that activates mTOR/p70S6K. Our results collectively suggest that mTOR/p70S6K is activated in a PI3K/Akt-dependent manner, but that in the absence of p110α or Akt, alternate pathway(s) may mediate activation of mTOR/p70S6K in C2C12 myoblasts.  相似文献   

2.
3.
X Li  Z Li  W Zhou  X Xing  L Huang  L Tian  J Chen  C Chen  X Ma  Z Yang 《Cell death & disease》2013,4(9):e803-9
Our previous studies have shown that the inhibition of phosphatidylinositol 3-kinase (PI3K) or mTOR complex 1 can obviously promote the Coxsackievirus B3 (CVB3)-induced apoptosis of HeLa cells by regulating the expression of proapoptotic factors. To further illustrate it, Homo sapiens eIF4E-binding protein 1 (4EBP1), p70S6 kinase (p70S6K), Akt1 and Akt2 were transfected to HeLa cells, respectively. And then, we established the stable transfected cell lines. Next, after CVB3 infection, apoptosis in different groups was determined by flow cytometry; the expressions of Bim, Bax, caspase-9 and caspase-3 were examined by real-time fluorescence quantitative PCR and western blot analysis; the expression of CVB3 mRNA and viral capsid protein VP1 were also analyzed by real-time fluorescence quantitative PCR, western blot analysis and immunofluorescence, respectively. At the meantime, CVB3 replication was observed by transmission electron microscope. We found that CVB3-induced cytopathic effect and apoptosis in transfected groups were more obvious than that in controls. Unexpectedly, apoptosis rate in Akt1 group was higher than others at the early stage after viral infection and decreased with the viral-infected time increasing, which was opposite to other groups. Compared with controls, the expression of CVB3 mRNA was increased at 3, 6, 12 and 24 h postinfection (p. i.) in all groups. At the meantime, VP1 expression in 4EBP1 group was higher than control during the process of infection, while the expressions in the other groups were change dynamically. Moreover, overexpression of 4EBP1 did not affect the mRNA expressions of Bim, Bax, caspase-9 and caspase-3; while protein expressions of Bim and Bax were decreased, the self-cleavages of caspase-9 and caspase-3 were stimulated. Meanwhile, overexpression of p70S6K blocked the CVB3-induced Bim, Bax and caspase-9 expressions but promoted the self-cleavage of caspase-9. In the Akt1 group, it is noteworthy that the expressions of Bim protein were higher than controls at 3 and 6 h p. i. but lower at 24 h p. i., and the expression of Bax protein were higher at 6 and 24 h p. i., while their mRNA expressions were all decreased. Furthermore, overexpression of Akt1 stimulated the procaspase-9 and procaspase-3 expression but blocked their self-cleavages. Overexpression of Akt2, however, had little effect on Bim, Bax and caspase-3, while prevented caspase-9 from self-cleavage at the late stage of CVB3 infection. As stated above, our results demonstrated that overexpression of 4EBP1, p70S6K, Akt1 or Akt2 could promote the CVB3-induced apoptosis in diverse degree via different mediating ways in viral replication and proapoptotic factors in BcL-2 and caspase families. As 4EBP1, p70S6K and Akt are the important substrates of PI3K and mammalian target of rapamycin (mTOR), we further illustrated the role of PI3K/Akt/mTOR signaling pathway in the process of CVB3-induced apoptosis.  相似文献   

4.
FST (follistatin) is essential for skeletal muscle development, but the intracellular signalling networks that regulate FST-induced effects are not well defined. We sought to investigate whether FST promotes the proliferation of myoblasts through the PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) signalling. In the present study, we transfected the pEGFP-duFST plasmid and added PI3K and mTOR inhibitors to the medium of duck primary myoblasts. Then, we analysed the cellular phenotypic changes that occurred and analysed the expression of target genes. The results showed that FST promoted myoblast proliferation, induced the mRNA expression of PI3K, Akt, mTOR, 70-kDa ribosomal protein S6K (S6 kinase) and the protein expression of phospho-Akt (Thr308), mTOR, phospho-mTOR (serine 2448), phospho-S6K (Ser417), inhibited the mRNA expression of FoxO1, MuRF1 (muscle RING finger-1) and the protein expression of phospho-FoxO1 (Ser256). Moreover, we found that the overexpression of FST could alleviate the inhibitory effect of myoblast proliferation caused by the addition of LY294002, a PI3K inhibitor. Additionally, the overexpression of duck FST also relieved the inhibition of myoblast proliferation caused by the addition of rapamycin (an mTOR inhibitor) through PI3K/Akt/mTOR signalling. In light of the present results, we hypothesize that duck FST could promote myoblast proliferation, which is dependent on PI3K/Akt/mTOR signalling.  相似文献   

5.
6.
PI3K activation is commonly observed in many human cancer cells. Survivin expression is elevated in cancer cells, and induced by some growth factors through PI3K activation. However, it is not clear whether PI3K activation is sufficient to induce survivin expression. To investigate the role of PI3K pathway in the regulation of survivin, we expressed an active form of PI3K, v-P3k in chicken embryonic fibroblast cells (CEF), and found that overexpression of PI3K-induced survivin mRNA expression. Forced expression of wild-type but not mutant tumor suppressor PTEN in CEF decreased survivin mRNA levels. PI3K regulates survivin expression through Akt activation. To further investigate downstream target of PI3K and Akt in regulating the expression of survivin mRNA, we found that PI3K and Akt-induced p70S6K1 activation and that overexpression of p70S6K1 alone was sufficient to induce survivin expression. The treatment of CEF cells by rapamycin decreased the survivin mRNA expression. This result demonstrated that p70S6K1 is an important target downstream of PI3K and Akt in regulating suvivin mRNA expression. The knockdown of survivin mRNA expression by its specific siRNA induced apoptosis of cancer cells when the cells were treated with LY294002 or taxol. Taken together, these results demonstrated that PI3K/Akt/p70S6K1 pathway is essential for regulating survivin mRNA expression.  相似文献   

7.
8.
Osteoarthritis is characterized by degenerative alterations of articular cartilage including both the degradation of extracellular matrix and the death of chondrocytes. The PI3K/Akt pathway has been demonstrated to involve in both processes. Inhibition of its downstream target NF‐kB reduces the degradation of extracellular matrix via decreased production of matrix metalloproteinases while inhibition of mTOR increased autophagy to reduce chondrocyte death. However, mTOR feedback inhibits the activity of the PI3K/Akt pathway and inhibition of mTOR could result in increased activity of the PI3K/Akt/NF‐kB pathway. We proposed that the use of dual inhibitors of PI3K and mTOR could be a promising approach to more efficiently inhibit the PI3K/Akt pathway than rapamycin or PI3K inhibitor alone and produce better treatment outcome. J. Cell. Biochem. 114: 245–249, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
目的探讨肿瘤转移相关因子RhoGDI2与PI3K/Akt/mTOR信号通路在肺癌侵袭转移过程中的作用及相关机制。方法利用PI3K/Akt/mTOR信号通路上特异性的抑制剂,采用MTT法,伤口愈合实验及侵袭实验观察不同浓度药物对肺癌95D细胞生长侵袭转移能力的影响,通过Western Blot方法观察RhoGDI2蛋白水平的变化。结果PI3K抑制剂LY294002及mTOR抑制剂Rapamycin都能抑制肺癌细胞95D的侵袭转移能力,联合应用抑制作用更强。PI3K抑制剂LY294002处理组RhoGDI2蛋白的表达量增加,且随浓度增加RhoGDI2蛋白表达也增加。mTOR抑制剂Rapamycin组,在低浓度时增加RhoGDI2蛋白的表达,但增大Rapamycin的浓度,RhoGDI2蛋白的表达反而降低。低浓度LY294002组和Rapa-mycin组联合应用可以明显增加RhoGDI2蛋白的表达。结论PI3K/Akt/mTOR信号通路中Akt的活化与RhoGDI2密切相关,RhoGDI2可能直接或间接通过与Akt的相互作用参与调节肺癌的侵袭转移的过程。  相似文献   

10.
The Gi-coupled M4 muscarinic acetylcholine receptor (mAChR) has recently been shown to stimulate the survival of PC12 cells through the PI3K/Akt/tuberin pathway. Since mTOR and p70S6K are critical components in activating translation which lie downstream of tuberin, we examined the ability of M4 mAChR to regulate these targets in PC12 cells. Carbachol (CCh) dose-dependently stimulated both mTOR and p70S6K phosphorylations and these responses were abolished by pertussis toxin pretreatment, indicating the involvement of the Gi-coupled M4 mAChR. Phosphorylations of both mTOR and p70S6K were effectively blocked upon inhibition of PI3K by wortmannin. As compared to similar responses elicited by the nerve growth factor (NGF), the M4 mAChR-induced activation of Akt/tuberin/mTOR/p70S6K occurred in a relatively transient manner. Although inhibition of protein phosphatase 2A by okadaic acid augmented the transient effects of CCh on Akt/tuberin phosphorylations, it failed to significantly prolong these responses. The total protein level of PTEN (tumor suppressor gene phosphatase and tensin homologue deleted on chromosome ten) was attenuated upon NGF, but not CCh treatment. This indicates that downregulation of PTEN may help to sustain the phosphorylation of Akt/tuberin by NGF. Collectively, these findings suggest that PP2A and PTEN may be involved in fine tuning the regulation of Akt/tuberin/mTOR/p70S6K in PC12 cells by M4 mAChR and TrkA, respectively.  相似文献   

11.
Programmed cell death 6 (PDCD6) was originally found as a pro-apoptotic protein, but its molecular mechanism is not well understood. In this study, we have attempted to investigate the effects of PDCD6 on the inhibition of angiogenesis-mediated cell growth as a novel anti-angiogenic protein. Purified recombinant human PDCD6 inhibited cell migration in a concentration-time-dependent manner. We also found that overexpressed PDCD6 suppressed vascular endothelial growth factor (VEGF)-induced proliferation, invasion, and capillary-like structure tube formation in vitro. PDCD6 suppressed phosphorylation of signaling regulators downstream from PI3K, including Akt, mammalian target of rapamycin (mTOR), glycogen synthase kinase-3β(GSK-3β), ribosomal protein S6 kinase (p70S6K), and also decreased cyclin D1 expression. We found binding PDCD6 to VEGFR-2, a key player in the PI3K/mTOR/P70S6K signaling pathway. Taken together, these data suggest that PDCD6 plays a significant role in modulating cellular angiogenesis.  相似文献   

12.
We have demonstrated that T3 increases the expression of ZAKI-4alpha, an endogenous calcineurin inhibitor. In this study we characterized a T3-dependent signaling cascade leading to ZAKI-4alpha expression in human skin fibroblasts. We found that T3-dependent increase in ZAKI-4alpha was greatly attenuated by rapamycin, a specific inhibitor of a protein kinase, mammalian target of rapamycin (mTOR), suggesting the requirement of mTOR activation by T3. Indeed, T3 activated mTOR rapidly through S2448 phosphorylation, leading to the phosphorylation of p70(S6K), a substrate of mTOR. This mTOR activation is mediated through phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) signaling cascade because T3 induced Akt/PKB phosphorylation more rapidly than that of mTOR, and these T3-dependent phosphorylations were blocked by both PI3K inhibitors and by expression of a dominant negative PI3K (Deltap85alpha). Furthermore, the association between thyroid hormone receptor beta1 (TRbeta1) and PI3K-regulatory subunit p85alpha, and the inhibition of T3-induced PI3K activation and mTOR phosphorylation by a dominant negative TR (G345R) demonstrated the involvement of TR in this T3 action. The liganded TR induces the activation of PI3K and Akt/PKB, leading to the nuclear translocation of the latter, which subsequently phosphorylates nuclear mTOR. The rapid activation of PI3K-Akt/PKB-mTOR-p70(S6K) cascade by T3 provides a new molecular mechanism for thyroid hormone action.  相似文献   

13.
This study examined how L-leucine affected DNA synthesis and cell cycle regulatory protein expression in cultured primary chicken hepatocytes. L-Leucine promoted DNA synthesis in a dose- and time-dependent manner, with concomitant increases in cyclin D1 and cyclin E expression. Phospholipase C (PLC) and protein kinase C (PKC) mediated the L-leucine-induced increases in [3H]-thymidine incorporation and cyclin D1/CDK4 and cyclin E/CDK2 expression, as U73122 (a PLC inhibitor) or bisindolylmaleimide I (a PKC blocker) inhibited these effects. L-Leucine also increased PKC phosphorylation and intracellular Ca2+ levels. L-Leucine-mediated increases in [3H]-thymidine incorporation and cyclin/CDK expression were sensitive to LY 294002 (PI3K inhibitor), Akt inhibitor, PD 98059 (MEK inhibitor). It was also observed that L-leucine-induced increases of cyclin/CDK expression were inhibited by PI3K siRNA and ERK siRNA; L-leucine increased extracellular signal-regulated kinases 1/2 (ERK1/2) and Akt phosphorylation levels. Bisindolylmaleimide I attenuated L-leucine-induced phosphorylation of ERK1/2 but did not influence Akt phosphorylation, and PI3K siRNA and LY 294002 inhibited L-leucine-induced ERK1/2 phosphorylation, suggesting some cross-talk between the PKC and ERK1/2 or PI3K/Akt and ERK1/2 pathways. L-Leucine also increased the levels of phosphorylated molecular target of rapamycin (mTOR) and two of its targets, ribosomal protein S6 kinase (p70S6K), and 4E binding protein 1 (4E-BP1); furthermore, rapamycin (an mTOR inhibitor) blocked all of the mitogenic effects of L-leucine. In addition, Akt inhibitor blocked L-leucine-induced mTOR phosphorylation. In conclusion, L-leucine stimulated DNA synthesis and promoted cell cycle progression in primary cultured chicken hepatocytes through PKC, ERK1/2, PI3K/Akt, and mTOR.  相似文献   

14.
The purpose of the present study was to investigate the effect of salidroside (Sal) on myocardial injury in lipopolysaccharide (LPS)‐induced endotoxemic in vitro and in vivo. SD rats were randomly divided into five groups: control group, LPS group (15 mg/kg), LPS plus dexamethasone (2 mg/kg), LPS plus Sal groups with different Sal doses (20, 40 mg/kg). Hemodynamic measurement and haematoxylin and eosin staining were performed. Serum levels of creatine kinase (CK), lactate dehydrogenase, the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH‐px), glutathione, tumour necrosis factor‐α (TNF‐α), interleukin‐6 (IL‐6), and interleukin‐1β (IL‐1β) were measured after the rats were killed. iNOS, COX‐2, NF‐κB and PI3K/Akt/mTOR pathway proteins were detected by Western blot. In vitro, we evaluated the protective effect of Sal on rat embryonic heart‐derived myogenic cell line H9c2 induced by LPS. Reactive oxygen species (ROS) in H9c2 cells was measured by flow cytometry, and the activities of the antioxidant enzymes CAT, SOD, GSH‐px, glutathione‐S‐transferase, TNF‐α, IL‐6 and IL‐1β in cellular supernatant were measured. PI3K/Akt/mTOR signalling was examined by Western blot. As a result, Sal significantly attenuated the above indices. In addition, Sal exerts pronounced cardioprotective effect in rats subjected to LPS possibly through inhibiting the iNOS, COX‐2, NF‐κB and PI3K/Akt/mTOR pathway in vivo. Furthermore, the pharmacological effect of Sal associated with the ROS‐mediated PI3K/Akt/mTOR pathway was proved by the use of ROS scavenger, N‐acetyl‐l ‐cysteine, in LPS‐stimulated H9C2 cells. Our results indicated that Sal could be a potential therapeutic agent for the treatment of cardiovascular disease.  相似文献   

15.
BF12 [(2E)‐3‐[6‐Methoxy‐2‐(3,4,5‐trimethoxybenzoyl)‐1‐benzofuran‐5‐yl]prop‐2‐enoic acid], a novel derivative of combretastatin A‐4 (CA‐4), was previously found to inhibit tumor cell lines, with a particularly strong inhibitory effect on cervical cancer cells. In this study, we investigated the microtubule polymerization effects and apoptosis signaling mechanism of BF12. BF12 showed a potent efficiency against cervical cancer cells, SiHa and HeLa, with IC50 values of 1.10 and 1.06 μm , respectively. The cellular mechanism studies revealed that BF12 induced G2/M phase arrest and apoptosis in SiHa and HeLa cells, which were associated with alterations in the expression of the cell G2/M cycle checkpoint‐related proteins (cyclin B1 and cdc2) and alterations in the levels of apoptosis‐related proteins (P53, caspase‐3, Bcl‐2, and Bax) of these cells, respectively. Western blot analysis showed that BF12 inhibited the PI3 K/Akt/mTOR signaling pathway and induced apoptosis in human cervical cancer cells. BF12 was identified as a tubulin polymerization inhibitor, evidenced by the effective inhibition of tubulin polymerization and heavily disrupted microtubule networks in living SiHa and HeLa cells. By inhibiting the PI3 K/Akt/mTOR signaling pathway and inducing apoptosis in human cervical cancer cells, BF12 shows promise for use as a microtubule inhibitor.  相似文献   

16.
摘要 目的:探究象皮生肌膏对肛瘘切除术后大鼠创面的治疗作用及其与PI3K/Akt/mTOR信号通路的相关性。方法:将SD雄性大鼠随机分为假手术组、模型组、象皮生肌膏组、湿润烧伤膏组,共4组,每组10只。4组均采用0号钢丝制造肛瘘模型,造模成功后,除假手术组外,均在麻醉下行肛瘘切除术,创面保持开放,使之形成"开放、渗血、渗液、有脓性分泌物"的感染性肛瘘术后创面,假手术组保留瘘管,不予换药,模型组予以生理盐水冲洗、络合碘消毒后不予换药,治疗组分别予以相应药物进行创面换药,共10天。10天后采用常规面积检测法比较模型组、象皮生肌膏组、湿润烧伤膏组大鼠肛瘘术后创面的创面愈合率及创面肉芽组织覆盖率;HE染色观察各组大鼠肛周组织病理情况;ELISA检测各组大鼠血清中bFGF、EGF、VEGF的表达水平,WB检测比较各组大鼠肛周肉芽组织中PI3K、Akt、mTOR、p70 S6K、p-PI3K(S473)、p-AKT(S473)、p-mTOR(Ser2448)、p-p70 S6K的蛋白表达水平。结果:与模型组比较,治疗第3、7、10天象皮生肌膏组和湿润烧伤膏组的创面愈合率及创面肉芽组织填充率显著升高(P<0.01)。病理切片显示,假手术组炎性细胞浸润较少,其余各组均可见不同程度的炎性细胞浸润,且创面区可见不同程度炎性修复型肉芽组织增生、胶原纤维新生及血管扩张;其中模型组病理切片显示大量炎性细胞浸润,血管扩张明显,并有明显的血管出血;象皮生肌膏组病理切片显示炎性细胞较少,成纤维细胞成熟且分布整齐,真皮层内胶原纤维丰富且排列整齐,可见血管新生,无明显血管扩张及出血;湿润烧伤膏组病理切片显示少量炎性细胞浸润及血管扩张,真皮层内可见成纤维细胞生成。ELISA检测结果显示,与假手术组比较,模型组血清中bFGF、EGF、VEGF的含量显著降低(P<0.01);与模型组比较,象皮生肌膏组血清中bFGF、EGF、VEGF的含量显著升高(P<0.01),湿润烧伤膏组大鼠血清中EGF、VEGF的含量显著升高(P<0.01)。WB检测结果显示,与假手术组比较,模型组肛周组织中p-PI3K、p-Akt 、p-mTOR、p-p70 S6K蛋白表达显著降低(P<0.01);与模型组比较,象皮生肌膏组肛周组织中p-PI3K、p-Akt 、p-mTOR、p-p70 S6K蛋白表达显著升高(P<0.05)。结论:象皮生肌膏能有效促进肛瘘术后创面修复,减轻肛瘘术后创面炎症反应,促进创面肉芽生长,其促愈机制可能与PI3K/Akt/mTOR信号通路相关蛋白表达有关,其通过上调PI3K/Akt/mTOR信号通路相关蛋白激活PI3K/Akt/mTOR信号通路,进而加快创面修复进程。  相似文献   

17.
hnRNP A1 acts as a critical splicing factor in regulating many alternative splicing events in various physiological and pathophysiological progressions. hnRNP A1 is capable of regulating UVB-induced hdm2 gene alternative splicing according to our previous study. However, the biological function and underlying molecular mechanism of hnRNP A1 in cell survival and cell cycle in response to UVB irradiation are still unclear. In this study, silencing hnRNP A1 expression by siRNA transfection led to decreased cell survival after UVB treatment, while promoting hnRNP A1 by lentiviruse vector resulted in increased cell survival. hnRNP A1 remarkably enhanced PI3K/Akt/mTOR signaling pathway by increasing phosphorylation of Akt, mTOR and P70S6 protein. Inhibition of PI3K/Akt signaling by LY294002 suppressed the expression of hnRNP A1. While mTOR signaling inhibitors, rapamycin and AZD8055, did not influence hnRNP A1 expression in HaCaT cells, suggesting that hnRNP A1 may be an upstream mediator of mTOR signaling. Furthermore, hnRNP A1 could alleviate UVB-provoked cell cycle arrest at G0/G1 phase and promoted cell cycle progression at G2/M phase. Our results indicate that hnRNP A1 promotes cell survival and cell cycle progression following UVB radiation.  相似文献   

18.
目的:通过建立过表达PC-1的前列腺癌LNCaP细胞系及敲低PC-1表达的C4-2细胞系,探究PC-1激活AKT信号通路的分子机制。方法:将PC-1基因及针对PC-1的siRNA序列,分别克隆至慢病毒表达载体pCDH-EF1-Myc-MCS-T2A-Puro及干扰载体pSIH1-H1-Puro,包装成慢病毒后分别感染前列腺癌LNCaP及C4-2细胞,通过Western印迹鉴定PC-1过表达及敲低效果,并检测PI3K/AKT/mTOR信号通路相关蛋白S6K、AKT的磷酸化水平。结果:PC-1过表达时,S6K磷酸化水平下降,而AKT的磷酸化水平上升。结论:PC-1可以通过抑制S6K激酶活性,解除其对AKT的负反馈抑制作用,从而激活AKT激酶的活性。  相似文献   

19.
Extracellular nucleotides are increasingly recognized as important regulators of growth in a variety of cell types. Recent studies have demonstrated that extracellular ATP is a potent inducer of fibroblast growth acting, at least in part, through an ERK1/2-dependent signaling pathway. However, the contributions of additional signaling pathways to extracellular ATP-mediated cell proliferation have not been defined. By using both pharmacologic and genetic approaches, we found that in addition to ERK1/2, phosphatidylinositol 3-kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and p70 S6K-dependent signaling pathways are required for ATP-induced proliferation of adventitial fibroblasts. We found that extracellular ATP acting in part through G(i) proteins increased PI3K activity in a time-dependent manner and transient phosphorylation of Akt. This PI3K pathway is not involved in ATP-induced activation of ERK1/2, implying activation of independent parallel signaling pathways by ATP. Extracellular ATP induced dramatic increases in mTOR and p70 S6K phosphorylation. This activation of the mTOR/p70 S6 kinase (p70 S6K) pathway in response to ATP is because of independent contributions of PI3K/Akt and ERK1/2 pathways, which converge on the level of p70 S6K. ATP-dependent activation of mTOR and p70 S6K also requires additional signaling inputs perhaps from pathways operating through Galpha or Gbetagamma subunits. Collectively, our data demonstrate that ATP-induced adventitial fibroblast proliferation requires activation and interaction of multiple signaling pathways such as PI3K, Akt, mTOR, p70 S6K, and ERK1/2 and provide evidence for purinergic regulation of the protein translational pathways related to cell proliferation.  相似文献   

20.

This study aimed to investigate the effects and molecular mechanisms of ivabradine in preventing cardiac hypertrophy in an established transverse aortic constriction (TAC) mouse model. A total of 56 male C57BL/6 mice were randomly assigned into the following seven groups (8 mice per group): sham, TAC model, Iva-10 (10 mg/kg/day ivabradine), Iva-20 (20 mg/kg/day ivabradine), Iva-40 (40 mg/kg/day ivabradine), Iva-80 (80 mg/kg/day ivabradine), and Rap (rapamycin, a positive control). Echocardiography and left ventricular hemodynamics were performed. Hematoxylin-eosin (H&E), Masson’s trichome staining, and TUNEL assays were conducted to evaluate cardiac hypertrophy, fibrosis, and apoptosis, respectively. Western blotting was performed to detect the expression of proteins related to the PI3K/Akt/mTOR/p70S6K pathway. Ivabradine could effectively improve left ventricular dysfunction and hypertrophy induced by TAC in a dose-independent manner. Moreover, no obvious change in heart rate (HR) was observed in the TAC and Rap groups, whereas a significant decrease in HR was found after ivabradine treatment (P?<?0.05). Cardiac hypertrophy, fibrosis, and apoptosis induced by TAC were notably suppressed after either rapamycin or ivabradine treatment (P?<?0.05). Ivabradine and rapamycin also decreased the expression of PI3K/Akt and mTOR induced by TAC. Ivabradine improved cardiac hypertrophy and fibrosis as well as reduced cardiomyocyte apoptosis via the PI3K/Akt/mTOR/p70S6K pathway in TAC model mice.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号