首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study was to evaluate the effects of propolis, pollen, and caffeic acid phenethyl ester (CAPE) on tyrosine hydroxylase (TH) activity and total RNA levels of Nω-nitro-L-arginine methyl ester (L-NAME) inhibition of nitric oxide synthase in the heart, adrenal medulla, and hypothalamus of hypertensive male Sprague dawley rats. The TH activity in the adrenal medulla, heart, and hypothalamus of the rats was significantly increased in the L-NAME group vs. control (p < 0.05). Treatment with L-NAME led to a significant increase in blood pressure (BP) in the L-NAME group compared to control (p < 0.05). These data suggest that propolis, pollen, and CAPE may mediate diminished TH activity in the heart, adrenal medulla, and hypothalamus in hypertensive rats. The decreased TH activity may be due to the modulation and synthesis of catecholamines and BP effects. In addition, the binding mechanism of CAPE within the catalytic domain of TH was investigated by means of molecular modeling approaches. These data suggest that the amino acid residues, Glu429 and Ser354 of TH may play a pivotal role in the stabilization of CAPE within the active site as evaluated by molecular dynamics (MD) simulations. Gibbs binding free energy (ΔGbinding) of CAPE in complex with TH was also determined by post-processing MD analysis approaches (i.e. Poisson-Boltzmann Surface Area (MM-PBSA) method).  相似文献   

2.
The effect of an ethanolic extract of propolis, with and without CAPE, and some of its components on cyclooxygenase (COX-1 and COX-2) activity in J774 macrophages has been investigated. COX-1 and COX-2 activity, measaured as prostaglandin E2 (PGE2) production, were concentration-dependently inhibited by propolis (3 x 10(-3) - 3 x 10(2) microgml(-1)) with an IC50 of 2.7 microgml(-1) and 4.8 x 10(-2) microgml(-1), respectively. Among the compounds tested pinocembrin and caffeic, ferulic, cinnamic and chlorogenic acids did not affect the activity of COX isoforms. Conversely, CAPE (2.8 x 10(-4) - 28 microgml(-1); 10(-9) - 10(-4) M) and galangin (2.7 x 10(-4) - 27 microgml(-1); 10(-9) - 10(-4) M) were effective, the last being about ten-twenty times less potent. In fact the IC50 of CAPE for COX-1 and COX-2 were 4.4 x 10(-1) microgml(-1) (1.5 x 10(-6) M) and 2 x 10(-3) microgml(-1) (6.3 x 10(-9) M), respectively. The IC50 of galangin were 3.7 microgml(-1) (15 x 10(-6) M) and 3 x 10(-2) microgml(-1) (120 x 10(-9) M), for COX-1 and COX-2 respectively. To better investigate the role of CAPE, we tested the action of the ethanolic extract of propolis deprived of CAPE, which resulted about ten times less potent than the extract with CAPE in the inhibition of both COX-1 and COX-2, with an IC50 of 30 microgml(-1) and 5.3 x 10(-1) microgml(-1), respectively. Moreover the comparison of the inhibition curves showed a significant difference (p < 0.001).These results suggest that both CAPE and galangin contribute to the overall activity of propolis, CAPE being more effective.  相似文献   

3.
Oxygen-derived free radicals have been implicated in the pathogenesis of cerebral injury after ischaemia-reperfusion. Caffeic acid phenethyl ester (CAPE), an active component of propolis extract, exhibits antioxidant properties. The purpose of the present study was to investigate the effects of ischaemia and subsequent reperfusion on rat brain and to investigate the effects of two free radical scavengers, CAPE and alpha-tocopherol, on this in vivo model of cerebral injury. Ischaemia was induced by bilateral occlusion of the carotid arteries for 20 min and reperfusion was achieved by releasing the occlusion to restore the circulation for 20 min. Control rats underwent a sham operation. CAPE at 10 micromol kg(-1) or alpha-tocopherol at 25 micromol kg(-1) was administered intraperitoneally before reperfusion. Reperfusion led to significant increase in the activity of xanthine oxidase and higher malondialdehyde levels in the brain. Acute administration of both CAPE and alpha-tocopherol suppressed ischaemia-reperfusion-induced cerebral lipid peroxidation and injury, but CAPE seems to offer a better therapeutic advantage over alpha-tocopherol.  相似文献   

4.
There is a great evidence that reactive oxygen species (ROS) play an important role in the pathophysiology of ischemia −reperfusion(I/R)injury in skeletal muscle.Caffeic acid phenethyl ester(CAPE)is a component of honeybeep ropolis.It has antioxidant, anti−inflammatory and free radical scavenger properties.The aim of this study is to determine the protective effects of CAPE against I/R injury in respect of protein oxidation, neutrophil in filtration, and the activities of xanthine oxidase(XO)and adenosine deaminase(AD)onan<invivomodel of skeletal muscle I/R injury.Rats were divided into three equal groups each consisting of sixrats:Sham operation, I/R, and I/R plus CAPE(I/R+CAPE)groups.CAPE was administered intraperitoneally 60 min before the beginning of the reperfusion.At the end of experimental procedure, blood and gastrocnemius muscle tissues were used for biochemical analyses.Tissue protein carbonyl(PC)levels and the activities of XO, myeloperoxidase(MPO) and AD in I/R group were significantly higher than that of control(p0.01, p0.05, p0.01, p0.005, respectively).Administration of CAPE significantly decreased tissue PC levels, MPO and XO activities in skeletal muscle compared to I/R group(p0.01, p0.05, p0.05, respectively).In addition, plasma creatine phosphokinase(CPK), XO and ADactivities were decreased in I/R+CAPE group compared to I/R group(p0.05, p0.05, p0.001). The results of this study revealed that free radical attacks may play an important role in the pathogenesis of skeletal muscle I/R injury. Also, the potent free radical scavenger compound, CAPE, may have protective potential in this process. Therefore, it can be speculated that CAPE or other antioxidant agents may be useful in the treatment of I/R injury as well as diffused traumatic injury of skeletal muscle.  相似文献   

5.
Reactive oxygen species have been implicated in pathogenesis injury after ischaemia-reperfusion (I/R). Caffeic Acid Phenethyl Ester (CAPE), an active component of honeybee propolis extract, exhibits antioxidant and anti-inflammatory properties. The aim of this study was to investigate the effects of CAPE on erythrocyte membrane damage after hind limb I/R. Rats were divided into two groups: I/R and I/R with CAPE pre-treatment. They were anaesthetized with intramuscular ketamine 100 mg kg(-1). A 4-h I/R period was performed on the right hind limb of all animals. In the CAPE-treated group, animals received CAPE 10 microm by intraperitoneal injection 1 h before the reperfusion. At the end of the reperfusion period, a midsternotomy was performed. A 5-ml blood sample was withdrawn from the ascending aorta for biochemical assays. Serum and erythrocyte membrane MDA levels were significantly lower in the CAPE-treated group when compared to the I/R group ( p = 0.001 and p<0.001, respectively). Erythrocyte membrane Na(+)-K(+) ATPases activity in the CAPE-treated group was significantly higher than the I/R group ( p<0.001). In conclusion, CAPE seems to be effective in protecting against oxidative stress. Therefore, we suggest that in order to decrease I/R injury, pre-administration of CAPE may be a promising agent for a variety of conditions associated with I/R.  相似文献   

6.
Human dipeptidyl peptidase III (DPP III) is a zinc-exopeptidase with implied roles in protein catabolism, pain modulation, and defense against oxidative stress. To understand the mode of ligand binding into its active site, we performed molecular modeling, site-directed mutagenesis, and biochemical analyses. Using the recently determined crystal structure of the human DPP III we built complexes between both, the wild-type (WT) protein and its mutant H568N with the preferred substrate Arg-Arg-2-naphthylamide (RRNA) and a competitive inhibitor Tyr-Phe-hydroxamate (Tyr-Phe-NHOH). The mutation of the conserved His568, structurally equivalent to catalytically important His231 in thermolysin, to Asn, resulted in a 1300-fold decrease of k(cat) for RRNA hydrolysis and in significantly lowered affinity for the inhibitor. Molecular dynamics simulations revealed the key protein-ligand interactions as well as the ligand-induced reorganization of the binding site and its partial closure. Simultaneously, the non-catalytic domain was observed to stretch and the opening at the wide side of the inter-domain cleft became enhanced. The driving force for these changes was the formation of the hydrogen bond between Asp372 and the bound ligand. The structural and dynamical differences, found for the ligand binding to the WT enzyme and the H568N mutant, and the calculated binding free energies, agree well with the measured affinities. On the basis of the obtained results we suggest a possible reaction mechanism. In addition, this work provides a foundation for further site-directed mutagenesis experiments, as well as for modeling the reaction itself.  相似文献   

7.
Endotoxins (lipopolysaccharides; LPS) are known to cause multiple organ failure, including myocardial dysfunction. The present study aimed to investigate the mechanism of caffeic acid phenethyl ester (CAPE) protection against LPS-induced cardiac stress. Rats were allocated into three groups; group 1 served as a normal control group, group 2 (LPS) received a single intraperitoneal injection of LPS (10 mg/kg), group 3 (LPS + CAPE) was injected intraperitoneally with CAPE (10 mg/kg/day; solubilized in saline containing 20% tween 20) throughout a period of 10 days prior to LPS injection. Rats were maintained 4 h before sacrifice. Caffeic acid phenethyl ester pretreatment normalized LPS-enhanced activities of serum creatine kinase (CK) and lactate dehydrogenase (LDH) as well as glutathione peroxidase (GPx), and myeloperoxidase (MPO) in cardiac tissue. A significant reduction of the elevated levels of serum tumor necrosis factor-alpha (TNF-α) as well as serum and cardiac nitrite/nitrate (NOx) ) was achieved after CAPE pretreatment. CAPE also restored malondialdelyde (MDA), reduced glutathione (GSH), and cytosolic calcium (Ca2+ ) levels in the heart. A marked induction of cardiac heme oxygenase-1 (HO-1) protein level was detected in CAPE-pretreated group. Whereas, LPS-induced reduction of adenosine triphosphate (ATP) and phosphocreatine (PCr) levels was insignificantly changed. Conclusively, the early treatment with CAPE maintained antioxidant defences, reduced oxidative injury, cytokine damage, and inflammation but did not markedly improve energy status in cardiac tissue. The beneficial effect of CAPE might be mediated, at least in part, by the superinduction of HO-1.  相似文献   

8.
This study investigated the anti-inflammatory effects of caffeic acid phenethyl ester (CAPE), a natural bee-produced compound, and compared it with corticosteroids in the treatment of experimentally induced methicillin-resistant Staphylococcus epidermidis (MRSE) endophthalmitis in addition to intravitreal antibiotics. An experimental endophthalmitis model was produced in 24 New Zealand albino rabbits by unilateral intravitreal injection of 0.1 ml of 4.7 x 10(4) colony-forming units (CFU) methicillin-resistant S. epidermidis. The animals were then divided randomly into three treatment groups and a control group, group 1 (six rabbits), received only intravitreal vancomycin (1.0 mg/0.1 ml); group 2 (six rabbits), received both intravitreal vancomycin (1.0 mg/0.1 ml) and intravitreal dexamethasone (400 microg/0.1 ml) and group 3 (six rabbits), received both intravitreal vancomycin (1.0 mg/0.1 ml) and subtenon CAPE (10 mg/0.3 ml) after 24 h post-infection. No treatment was given to the control group. Treatment efficacy was assessed by clinical examination, vitreous culture and histopathology. There were no statististically significant differences between clinical scores of all groups in examinations at 24 and 48 h post-infection (p = 0.915 and p = 0.067 respectively), but in examinations at 72 h post-infection and after 7 days post-infection, although the clinical scores of treatment groups were not significantly different from each other, they were significantly lower than the control group (p < 0.05). The culture results of all groups were sterile. As a result, CAPE was found to be as effective as dexamethasone in reducing inflammation in the treatment of experimental MRSE endophthalmitis when used with antibiotics. More studies are needed to determine the optimal administration route and effective dosage of this compound.  相似文献   

9.
The ecdysone receptor is a nuclear hormone receptor that plays a pivotal role in the insect metamorphosis and development. To address the molecular mechanisms of binding and selectivity, the interactions of two typical agonists Ponasterone A and 20-Hydroxyecdysone with Drosophila melanogaster (DME) and Leptinotarsa decemlineata ecdysone (LDE) receptors were investigated by homology modeling, molecular docking, molecular dynamic simulation, and thermodynamic analysis. We discover that 1) the L5-loop, L11-loop, and H12 helix for DME, L7-loop, and L11-loop for LDE are more flexible, which affect the global dynamics of the ligand-binding pocket, thus facilitating the ligand recognition of ecdysone receptor; 2) several key residues (Thr55/Thr37, Phe109/Phe91, Arg95/Arg77, Arg99/Arg81, Phe108/Leu90, and Ala110/Val92) are responsible for the binding of the proteins; 3) the binding-free energy is mainly contributed by the van der Waals forces as well as the electrostatic interactions of ligand and receptor; 4) the computed binding-free energy difference between DME-C1 and LDE-C1 is –4.65 kcal/mol, explains that C1 can form many more interactions with the DME; 5) residues Phe108/Leu90 and Ala110/Val92 have relatively position and orientation difference in the two receptors, accounting most likely for the ligand selectivity of ecdysone receptor from different orders of insects. This study underscores the expectation that different insect pests should be able to discriminate among compounds from different as yet undiscovered compounds, and the results firstly show a structural and functional relay between the agonists and receptors (DME and LDE), which can provide an avenue for the development of target-specific insecticides.

Communicated by Ramaswamy H. Sarma  相似文献   


10.
11.
The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 μg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 μg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 μg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.  相似文献   

12.
Cisplatin is one of the most active cytotoxic agents in the treatment of cancer. High doses of cisplatin have also been known to produce hepatotoxicity. Several studies suggest that supplementation with an antioxidant can influence cisplatin-induced hepatotoxicity. The present study was designed to determine the effects of cisplatin on the liver oxidant/antioxidant system, and the possible protective effects of caffeic acid phenethyl ester (CAPE) on liver toxicity induced by cisplatin. Twenty-four adult female Wistar albino rats were divided into four groups of six rats each: control, cisplatin, CAPE, and cisplatin+CAPE. Cisplatin and CAPE were injected intraperitoneally. Liver tissue was removed to study the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), myeloperoxidase (MPO), xanthine oxidase (XO), adenosine deaminase (ADA), and the levels of malondialdehyde and nitric oxide (NO). The activities of SOD and GSH-Px increased in the cisplatin+CAPE and CAPE groups compared with the cisplatin group. CAT activity was higher in the cisplatin +CAPE group than the other three groups. XO activity was lower in the cisplatin group than the control group. MPO activity was also increased in the cisplatin group compared to the control and CAPE groups. It can be concluded that CAPE may prevent cisplatin-induced oxidative changes in liver by strengthening the antioxidant defence system by reducing reactive oxygen species and increasing antioxidant enzyme activities.  相似文献   

13.
The aim of this study was to examine the effect of caffeic acid phenethyl ester (CAPE) on lipid peroxidation (LPO) and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in the liver of streptozotocin (STZ)-induced diabetic rats. Twenty-seven rats were randomly divided into three groups: group I, control non-diabetic rats (n = 9); group II, STZ-induced, untreated diabetic rats (n = 8); group III, STZ-induced, CAPE-treated diabetic rats (n = 10), which were intraperitoneally injected with CAPE (10 microM kg(-1) day(-1)) after 3 days followed by STZ treatment. The liver was excised after 8 weeks of CAPE treatment, the levels of malondialdehyde (MDA) and the activities of SOD, CAT, and GSH-Px in the hepatic tissues of all groups were analyzed. In the untreated diabetic rats, MDA markedly increased in the hepatic tissue compared with the control rats (p < 0.0001). However, MDA levels were reduced to the control level by CAPE. The activities of SOD, CAT, and GSH-Px in the untreated diabetic group were higher than that in the control group (p < 0.0001). The activities of SOD and GSH-Px in the CAPE-treated diabetic group were higher than that in the control group (respectively, p < 0.0001, p < 0.035). There were no significant differences in the activity of CAT between the rats of CAPE-treated diabetic and control groups. Rats in the CAPE-treated diabetic group had reduced activities of SOD and CAT in comparison with the rats of untreated diabetic group (p < 0.0001). There were no significant differences in the activity of GSH-Px between the rats of untreated diabetic and CAPE-treated groups. It is likely that STZ-induced diabetes caused liver damage. In addition, LPO may be one of the molecular mechanisms involved in STZ-induced diabetic damage. CAPE can reduce LPO caused by STZ-induced diabetes.  相似文献   

14.
15.
Abstract

In the past few decades, extensive discussions have been on the impact of artificial sweeteners on the risk of cancer. The present study aimed to evaluate the interaction of saccharin (SA) and sodium saccharin (SSA) with the promoter of the human p53 gene. The binding ability was assessed using the spectroscopic technique, molecular docking and molecular dynamics (MD) simulation methods. Free energy of binding has been calculated using Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method. Fluorescence spectra of mentioned gene with concentration profiles of SA and SSA were obtained in a physiological condition. A gradual increase without any significant spectral shift in the fluorescence intensity of around 350?nm was evident, indicating the presence of an interaction between both compounds and gene. The docking results showed that both compounds were susceptible to bind to 5′-DG56DG57-3′ nucleotide sequence of gene. Furthermore, the MD simulation demonstrated that the binding positions for SA and SSA were 5′-A1T3T4-3′ and 5′-G44T45-3′ sequences of gene, respectively. The binding of these sweeteners to gene made significant conformational changes to the DNA structure. Hydrogen and hydrophobic interactions are the major forces in complexes stability. Through the groove binding mode, the non-interactive DNA-binding nature of SSA and SA has been demonstrated by the results of spectrofluorometric and molecular modeling. This study could provide valuable insight into the binding mechanism of SA and its salt with p53 gene promoter as macromolecule at the molecular level in atomistic details. This work can contribute to the possibility of the potential hazard of carcinogenicity of this sweetener and to design and apply new and safer artificial sweeteners. Abbreviations SA Saccharin

SSA Sodium Saccharin

Pp53g promoter of human p53 gene

MD Molecular dynamics

RMSD Root-mean-square deviation

RMSF Root-mean-square fluctuation

Rg Radius of Gyration

SASA Solvent-Accessible Surface Area

ADI Acceptable daily intake

MM/PBSA Molecular Mechanics/Poisson–Boltzmann Surface Area

Communicated by Ramaswamy H. Sarma  相似文献   

16.
Migration, invasion, metastasis and angiogenesis associated with cancer depend on the surrounding microenvironment. Angiogenesis, the growth of new capillaries, is a regulator of cancer growth and a useful target for cancer therapy. We examined matrix protein interactions in a gastric cancer cell culture that was treated with different doses of caffeic acid (3,4-dihydroxycinnamic acid) phenethyl ester (CAPE). We also investigated the relations among the levels of vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), endostatin (ES) and trombospondin-1 (TSP-1). Cytotoxity of CAPE was measured using the 3-(4,5-dmethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. We examined the behavior of cells on laminin and collagen I coated surfaces in response to the angiogenic effect of these matrix molecules. We examined the protein alterations of these matrix molecules immunohistochemically and measured the levels of VEGF, MMP-9, ES and TSP-1 using the ELISA test. We showed that application of CAPE to the gastric cancer cell line on tissue culture plastic, laminin and collagen I significantly decreased the VEGF and MMP-9 protein levels. We found that TSP-1 levels were increased significantly in the gastric cancer cells after application of CAPE. The protein levels of gastric cancer cells also were increased significantly when tissue was cultured on laminin and collagen I. Application of CAPE to cells on laminin or collagen I coated surfaces significantly increased all of the proteins except ES. ES levels were increased on the collagen I covered surfaces, but the laminin surface decreased the levels of ES significantly. We demonstrated the beneficial effect of CAPE on a gastric cancer cell line including inhibition of proliferation and induction of some proteins that might be related to decreased angiogenesis.  相似文献   

17.
Zhou Z  Bates M  Madura JD 《Proteins》2006,65(3):580-592
Human heparanase is an endo-beta-D-glycosidase that cleaves heparan sulphate (HS) chains in the extracellular matrix and basement membrane. It is known that the cleavage of HS by heparanase results in cell invasion and metastasis of cancer. Therefore, heparanase is considered an important target for cancer drug development. The three-dimensional structure of heparanase would be useful in the rational design of inhibitors targeted to the enzyme; however, the three-dimensional structure has not yet been determined. In our effort to design inhibitors, we developed a three-dimensional structure of heparanase using a homology-modeling approach. The homology-built structure is consistent to previous bioinformatics and site-mutation experimental results. The heparanase features a (alpha/beta)(8) TIM-barrel fold with two glutamate residues (Glu225 and Glu343) located in the active-site cleft. This feature supports the putative mechanism of proton donor and nucleophilic sites. Docking simulations yielded 41 complex structures, which indicate that the bound inhibitor could block ligand binding into the catalytic site. A free energy of binding model was established for 25 heparanase inhibitors with a training set of 25 heparanase inhibitors using the linear response MM-PBSA approach (LR-MM-PBSA). The correlation between calculated and experimental activity was 0.79 and the reliability of the model was validated with leave-one-out cross-validation method. Its predictive capability was further validated using a test set of 16 inhibitors similar to the training set of inhibitors. The correlation between the predicted and observed activities is significantly improved by the protein "induced-fit" that accounts for the flexibility of the receptor. These interaction and pharmacophore elements provide a unique insight to the rational design of new ligands targeted to the enzyme.  相似文献   

18.
Oxygen‐derived free radicals have been implicated in the pathogenesis of renal injury after ischaemia–reperfusion. Caffeic acid phenethyl ester (CAPE), an active component of propolis extract, exhibits antioxidant properties. To investigate whether treatment with either CAPE or alpha‐tocopherol modifies the levels of the endogenous indices of oxidant stress, we examined their effects on an in vivo model of renal ischaemia–reperfusion injury in rats. CAPE at 10 μmol kg?1 or alpha‐tocopherol at 10 mg kg?1 was administered intraperitoneally before reperfusion. Acute administration of both CAPE and alpha‐tocopherol altered the indices of oxidative stress differently in renal ischaemia–reperfusion injury. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Despite the investments in malaria research, an effective vaccine has not yet been developed and the causative parasites are becoming increasingly resistant to most of the available drugs. PfATP6, the sarco/endoplasmic reticulum Ca2+ pump (SERCA) of P. falciparum, has been recently genetically validated as a potential antimalarial target and cyclopiazonic acid (CPA) has been found to be a potent inhibitor of SERCAs in several organisms, including P. falciparum. In position 263, PfATP6 displays a leucine residue, whilst the corresponding position in the mammalian SERCA is occupied by a glutamic acid. The PfATP6 L263E mutation has been studied in relation to the artemisinin inhibitory effect on P. falciparum and recent studies have provided evidence that the parasite with this mutation is more susceptible to CPA. Here, we characterized, for the first time, the interaction of CPA with PfATP6 and its mammalian counterpart to understand similarities and differences in the mode of binding of the inhibitor to the two Ca2+ pumps. We found that, even though CPA does not directly interact with the residue in position 263, the presence of a hydrophobic residue in this position in PfATP6 rather than a negatively charged one, as in the mammalian SERCA, entails a conformational arrangement of the binding pocket which, in turn, determines a relaxation of CPA leading to a different binding mode of the compound. Our findings highlight differences between the plasmodial and human SERCA CPA‐binding pockets that may be exploited to design CPA derivatives more selective toward PfATP6. Proteins 2015; 83:564–574. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

20.
The initiation of microtubule assembly within cells is guided by a cone shaped multi‐protein complex, γ‐tubulin ring complex (γTuRC) containing γ‐tubulin and atleast five other γ‐tubulin‐complex proteins (GCPs), i.e., GCP2, GCP3, GCP4, GCP5, and GCP6. The rim of γTuRC is a ring of γ‐tubulin molecules that interacts, via one of its longitudinal interfaces, with GCP2, GCP3, or GCP4 and, via other interface, with α/β?tubulin dimers recruited for the microtubule lattice formation. These interactions however, are not well understood in the absence of crystal structure of functional reconstitution of γTuRC subunits. In this study, we elucidate the atomic interactions between γ‐tubulin and GCP4 through computational techniques. We simulated two complexes of γ‐tubulin‐GCP4 complex (we called dimer1 and dimer2) for 25 ns to obtain a stable complex and calculated the ensemble average of binding free energies of ?158.82 and ?170.19 kcal/mol for dimer1 and ?79.53 and ?101.50 kcal/mol for dimer2 using MM‐PBSA and MM‐GBSA methods, respectively. These highly favourable binding free energy values points to very robust interactions between GCP4 and γ‐tubulin. From the results of the free‐energy decomposition and the computational alanine scanning calculation, we identified the amino acids crucial for the interaction of γ‐tubulin with GCP4, called hotspots. Furthermore, in the endeavour to identify chemical leads that might interact at the interface of γ‐tubulin‐GCP4 complex; we found a class of compounds based on the plant alkaloid, noscapine that binds with high affinity in a cavity close to γ‐tubulin‐GCP4 interface compared with previously reported compounds. All noscapinoids displayed stable interaction throughout the simulation, however, most robust interaction was observed for bromo‐noscapine followed by noscapine and amino‐noscapine. This offers a novel chemical scaffold for γ‐tubulin binding drugs near γ‐tubulin‐GCP4 interface. Proteins 2015; 83:827–843. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号