首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background information. miRNAs (microRNAs) are a class of non‐coding RNAs that inhibit gene expression by binding to recognition elements, mainly in the 3′ UTR (untranslated region) of mRNA. A single miRNA can target several hundred mRNAs, leading to a complex metabolic network. miR‐16 (miRNA‐16), located on chromosome 13q14, is involved in cell proliferation and apoptosis regulation; it may interfere with either oncogenic or tumour suppressor pathways, and is implicated in leukaemogenesis. These data prompted us to search for and validate novel targets of miR‐16. Results. In the present study, by using a combined bioinformatics and molecular approach, we identified two novel putative targets of miR‐16, caprin‐1 (cytoplasmic activation/proliferation‐associated protein‐1) and HMGA1 (high‐mobility group A1), and we also studied cyclin E which had been previously recognized as an miR‐16 target by bioinformatics database. Using luciferase activity assays, we demonstrated that miR‐16 interacts with the 3′ UTR of the three target mRNAs. We showed that miR‐16, in MCF‐7 and HeLa cell lines, down‐regulates the expression of caprin‐1, HMGA1a, HMGA1b and cyclin E at the protein level, and of cyclin E, HMGA1a and HMGA1b at the mRNA levels. Conclusions. Taken together, our data demonstrated that miR‐16 can negatively regulate two new targets, HMGA1 and caprin‐1, which are involved in cell proliferation. In addition, we also showed that the inhibition of cyclin E expression was due, at least in part, to a decrease in its mRNA stability.  相似文献   

2.
The increase in proliferation and the lack of differentiation of cancer cells resemble what occur in the embryonic stem cells during physiological process of embryogenesis. There are also striking similarities in the behaviour between the invasive placental cells and invasive cancer cells. In the present study, microarrays were used to analyse the global expression of microRNAs in a human embryonic stem cell line (i.e. HUES‐17) and four colorectal cancer (CRC) cell lines (i.e. LoVo, SW480, HT29 and Caco‐2) with different metastatic potentialities. Only the expression of miR‐26b was significant decreased in HUES‐17s and LoVo cells, compared with other three cell lines (P < 0.01). The quantitative real‐time PCR analysis confirmed the results of the microarray analysis. Overexpression of miR‐26b expression by miR‐26 mimics transfection and led to the significant suppression of the cell growth and the induction of apoptosis in LoVo cells in vitro, and the inhibition of tumour growth in vivo. Moreover, the potential targets of miR‐26b was predicted by using bioinformatics, and then the predicted target genes were further validated by comparing gene expression profiles between LoVo and NCM460 cell lines. Four genes (TAF12, PTP4A1, CHFR and ALS2CR2) with intersection were found to be the targets of miR‐26b. MetaCore network analysis further showed that the regulatory pathways of miR‐26b were significantly associated with the invasiveness and metastasis of CRC cells. These data suggest that miR‐26b might serve as a novel prognostic factor and a potential therapeutic target for CRC.  相似文献   

3.
We aimed to explore the mechanism of the KCNQ1OT1/miR‐760/PPP1R1B axis acting to regulate methotrexate (MTX) resistance of colorectal cancer (CRC). Differentially expressed mRNAs and lncRNAs in MTX‐sensitive CRC cell lines and MTX‐resistant cell lines were determined through microarray analysis. Application of bioinformatics analysis was aimed to uncover the relationships among the lncRNAs/miRNAs/mRNAs, and to demonstrate the effects of cAMP signalling pathway in MTX‐resistant CRC. The expression level of RNA and proteins was, respectively, detected using qRT‐PCR and Western blot assays, whereas the dual‐luciferase reporter gene assay was implemented to verify the targeted relationship. The influence of the lncRNA/miRNA/mRNA axis on biological functions of MTX‐resistant cells and on the growth of tumours determined through both vitro and vivo experiments. LncRNA KCNQ1OT1 and PPP1R1B mRNA were overexpressed in MTX‐resistant CRC tumour cells. KCNQ1OT1 functioned as a sponge of miR‐760, which targeted PPP1R1B. Knockdown of KCNQ1OT1 enhanced chemosensitivity towards MTX through the sponging of miR‐760. MiR‐760 expressed at low levels targeted PPP1R1B in the activated cAMP signalling pathway under MTX treatment. Knockdown of KCNQ1OT1 dampened the proliferation of MTX‐resistant (HT29/MTX) cells by regulating the miR‐760/PPP1R1B axis, which also induced cell cycle arrest together with apoptosis. KCNQ1OT1 regulated the expression of PPP1R1B and the downstream genes CREB and CBP in the cAMP signalling pathway. MTX showed a suppressive function on CRC progression. KCNQ1OT1 enhanced the MTX resistance of CRC cells by regulating miR‐760‐mediated PPP1R1B expression via the cAMP signalling pathway.  相似文献   

4.
The purpose of this study was to figure out the effect of ciRS‐7/miR‐7/NF‐κB axis on the development of non‐small cell lung cancer (NSCLC). In response, the expressions of ciRS‐7, miR‐7 and NF‐κB subunit (ie RELA) within NSCLC tissues and cell lines were determined with real‐time polymerase chain reaction (RT‐PCR) and Western blot. Moreover, the NSCLC cells were transfected with pcDNA3‐ciRS‐7‐ir, pcDNA3‐ciRS‐7, miR‐NC and miR‐7 mimic. Furthermore, the targeted relationships between ciRS‐7 and miR‐7, as well as between miR‐7 and RELA, were confirmed by luciferase reporter assay. The proliferation, migration and apoptosis of NSCLC cells were, successively, measured using CCK‐8 assay, wound‐healing assay and flow cytometry test. Consequently, ciRS‐7, miR‐7, histopathological grade, lymph node metastasis and histopathological stage could independently predict the prognosis of patients with NSCLC (all P < .05). Moreover, remarkably up‐regulated ciRS‐7 and RELA expressions, as along with down‐regulated miR‐7 expressions, were found within NSCLC tissues and cells in comparison with normal ones (P < .05). Besides, overexpressed ciRS‐7 and underexpressed miR‐7 were correlated with increased proliferation, migration and invasion, yet reduced apoptosis rate of NSCLC cells (P < .05). More than that, ciRS‐7 specifically targeted miR‐7 to reduce its expressions (P < .05). Ultimately, the NSCLC cells within miR‐7 + RELA group were observed with superior proliferative, migratory and invasive capabilities than those within miR‐7 group (P < .05), and RELA expression was also significantly modified by both ciRS‐7 and miR‐7 (P < .05). In conclusion, the ciRS‐7/miR‐7/NF‐kB axis could exert pronounced impacts on the proliferation, migration, invasion and apoptosis of NSCLC cells.  相似文献   

5.
6.
Colorectal cancer (CRC) is one of the most common cancers worldwide, with high mortality. Abnormally expressed microRNAs (miRNAs) are considered novel biomarkers in cancer diagnosis. The aim of this study was to investigate the diagnostic value of miR‐92a‐1 in patients with CRC. Serum samples were collected from 148 patients pathologically diagnosed with CRC and 68 gender‐ and age‐matched healthy volunteers. Quantitative real‐time polymerase chain reaction (qRT‐PCR) was used to measure serum miR‐92a‐1 level. Relationship between miR‐92a‐1 and clinicopathological features of CRC cases was analysed via chi‐square test. Receiver operating characteristic (ROC) curve was plotted to estimate the diagnostic value of miR‐92a‐1 in CRC. Serum miR‐92a‐1 was significantly up‐regulated in CRC patients compared with healthy individuals (P < .001). Moreover, miR‐92a‐1 expression was correlated with TNM stage (P = .02), histological stage (P = .003), lymph node metastasis (P = .003) and distant metastasis (P < .001). ROC analysis showed that the area under the ROC curve (AUC) was 0.914, suggesting high diagnostic accuracy of miR‐92a‐1 in ROC. The optimal cut‐off value was 1.485, with a sensitivity of 81.8% and a specificity of 95.6%. MiR‐92a‐1 is increased in CRC patients and correlated with aggressive clinical characteristics. Serum miR‐92a‐1 may be a potential diagnostic biomarker for CRC.  相似文献   

7.
The main topic of this study was to investigate the effect of benzo[a]pyrene (BP) on microRNAs and their target genes expression levels in primary cell cultures from normal and malignant endometrial tissue. MicroRNA‐126 (miR‐126) and miR‐190a were most sensitive to BP treatment. The treatment of both cultures with BP was accompanied by a decrease of miR‐126 level and an increase of EGFL7 gene expression level. BP‐induced upregulation of miR‐190a was detected only in normal cells and it was accompanied with decrease of mRNA levels of TP53INP1 and PHLPP1 genes. Taking into account that BP promoted the proliferation of normal cells and amplified apoptosis of cancer cells, it is possible that miR‐190a is involved in general cellular response to BP. The findings of this study indicate that miR‐190a and its target genes may be involved in the regulation of cell fate under BP treatment.  相似文献   

8.
Vascular endothelial growth factor (VEGF) is correlated with angiogenesis and early relapse of colorectal cancer (CRC). This study investigated the role of miR‐148a in the regulation of VEGF/angiogenesis and early relapse of CRC. We established a stable clone with miR‐148a expression in HCT116 and HT29 cell lines and created a hypoxic condition by using CoCl2 to determine the underlying mechanism of miR‐148a. The effects of miR‐148a on the phosphoryl‐ERK (pERK)/hypoxia‐inducible factor‐1α (HIF‐1α)/VEGF pathway were evaluated through Western blotting and the inhibitory effect of miR‐148a on angiogenesis was demonstrated through a tube formation assay. Sixty‐three CRC tissues (28 early relapse and 35 non‐early relapse) were analysed to assess the relationship between miR‐148a and HIF‐1α/VEGF. The protein expression of pERK/HIF‐1α/VEGF in HCT116 and HT29 cells was significantly decreased by miR‐148a (all P < 0.05). The protein expression of VEGF/HIF‐1α was strongly inversely associated with the expression of miR‐148a in the 63 CRC tissue samples (all P < 0.05). Tube formation assay demonstrated that miR‐148a significantly obliterated angiogenesis. miR‐148a suppresses VEGF through down‐regulation of the pERK/HIF‐1α/VEGF pathway and might lead to the inhibition of angiogenesis; miR‐148a down‐regulation increased the early relapse rate of CRC. This demonstrates that miR‐148a is a potential diagnostic and therapeutic target.  相似文献   

9.
MiR‐34c is considered a potent tumour suppressor because of its negative regulation of multiple target mRNAs that are critically associated with tumorigenesis and metastasis. In the present study, we demonstrated a novel target of miR‐34c, KITLG, which has been implicated in colorectal cancer (CRC). First, we found a significant negative relationship between miR‐34c and KITLG mRNA expression levels in CRC cell lines, including HT‐29, HCT‐116, SW480 and SW620 CRC cell lines. In silico analysis predicted putative binding sites for miR‐34c in the 3′ untranslated region (3′UTR) of KITLG mRNA. A dual‐luciferase reporter assay further confirmed that KITLG is a direct target of miR‐34c. Then, the cell lines were infected with lentiviruses expressing miR‐34c or a miR‐34c specific inhibitor. Restoration of miR‐34c dramatically reduced the expression of KITLG mRNA and protein, while silencing of endogenous miR‐34c increased the expression of KITLG protein. The miR‐34c‐mediated down‐regulation of KITLG was associated with the suppression on proliferation, cellular transformation, migration and invasion of CRC cells, as well as the promotion on apoptosis. Knockdown of KITLG by its specific siRNA confirmed a critical role of KITLG down‐regulation for the tumour‐suppressive effects of miR‐34c in CRC cells. In conclusion, our results demonstrated that miR‐34c might interfere with KITLG‐related CRC and could be a novel molecular target for CRC patients.  相似文献   

10.
Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH). We hypothesized that heart‐relevant microRNAs, that is myomiRs (miR‐1, miR‐133a, miR‐208, miR‐499) and miR‐214, can have a role in the right ventricle in the development of PAH. To mimic PAH, male Wistar rats were injected with monocrotaline (MCT, 60 mg/kg, s.c.); control group received vehicle. MCT rats were divided into two groups, based on the clinical presentation: MCT group terminated 4 weeks after MCT administration and prematurely terminated group (ptMCT) displaying signs of terminal disease. Myocardial damage genes and candidate microRNAs expressions were determined by RT‐qPCR. Reduced blood oxygen saturation, breathing disturbances, RV enlargement as well as elevated levels of markers of myocardial damage confirmed PH in MCT animals and were more pronounced in ptMCT. MyomiRs (miR‐1/miR‐133a/miR‐208a/miR‐499) were decreased and the expression of miR‐214 was increased only in ptMCT group (P < 0.05). The myomiRs negatively correlated with Fulton index as a measure of RV hypertrophy in MCT group (P < 0.05), whereas miR‐214 showed a positive correlation (P < 0.05). We conclude that the expression of determined microRNAs mirrored the disease severity and targeting their pathways might represent potential future therapeutic approach in PAH.  相似文献   

11.
Long non‐coding RNAs (lncRNAs) have shown critical roles in multiple cancers via competitively binding common microRNAs. miR‐214 has been proved to play tumour suppressive roles in various cancers, including cervical cancer. In this study, we identified that lncRNA LINC01535 physically binds miR‐214, relieves the repressive roles of miR‐214 on its target EZH2, and therefore up‐regulates EZH2 protein expression. Intriguingly, we also found that EZH2 directly represses the expression of miR‐214. Thus, miR‐214 and EZH2 form double negative regulatory loop. Through up‐regulating EZH2, LINC01535 further represses miR‐214 expression. Functional experiments showed that enhanced expression of LINC01535 promotes cervical cancer cell growth, migration and invasion in vitro and cervical cancer xenograft growth in vivo. Reciprocally, LINC01535 knockdown suppresses cervical cancer cell growth, migration and invasion. Activation of the miR‐214/EZH2 regulatory loop by overexpression of miR‐214 or silencing of EZH2 reverses the roles of LINC01535 in promoting cervical canc`er cell growth, migration and invasion in vitro and cervical cancer xenograft growth in vivo. Clinically, LINC01535 is significantly up‐regulated in cervical cancer tissues and correlated with advanced clinical stage and poor prognosis. Moreover, the expression of LINC01535 is reversely associated with the expression of miR‐214 and positively associated with the expression of EZH2 in cervical cancer tissues. In conclusion, this study reveals that LINC01535 promotes cervical cancer progression via repressing the miR‐214/EZH2 regulatory loop.  相似文献   

12.
13.
14.
15.
16.
Acquired chemoresistance represents a major obstacle in cancer treatment, the underlying mechanism of which is complex and not well understood. MiR‐425‐5p has been reported to be implicated tumorigenesis in a few cancer types. However, its role in regulating chemoresistance has not been investigated in colorectal cancer (CRC) cells. Microarray analysis was performed in isogenic chemosensitive and chemoresistant HCT116 cell lines to identify differentially expressed miRNAs. miRNA quantitative real‐time PCR was used to detect miR‐425‐5p expression levels between drug resistant and parental cancer cells. MiR‐425‐5p mimic and inhibitor were transfected, followed by CellTiter‐Glo® assay to examine drug sensitivity in these two cell lines. Western Blot and luciferase assay were performed to investigate the direct target of miR‐425‐5p. Xenograft mouse models were used to examine in vivo function of miR‐425‐5p. Our data showed that expression of miR‐425‐5p was significantly up‐regulated in HCT116‐R compared with parental HCT116 cells. Inhibition of miR‐425‐5p reversed chemoresistance in HCT116‐R cells. Programmed cell death 10 (PDCD10) is the direct target of miR‐425‐5p which is required for the regulatory role of miR‐425‐5p in chemoresistance. MiR‐425‐5p inhibitor sensitized HCT116‐R xenografts to chemo drugs in vivo. Our study demonstrated that miR‐425‐5p regulates chemoresistance of CRC cells by modulating PDCD10 expression level both in vitro and in vivo. MiR‐425‐5p may represent a new therapeutic target for the intervention of CRC.  相似文献   

17.
Schizophrenia (SCZ) and bipolar disorder (BD) are two major neuropsychiatric diseases that are the most substantial causes of disability and mortality worldwide. CTNNB1 encodes beta‐catenin, an important protein in canonical Wnt signaling. We aimed to investigate the association between the rs2953 of CTNNB1 and the risk of SCZ and BD and to further explore the function of rs2953. A total of 1658 samples (548 SCZ cases, 512 BD cases, and 598 controls) were examined in terms of the genotype of CTNNB1 rs2953. The mRNA expression level of CTNNB1 significantly increased in the SCZ and BD groups compared with that in the control group. Significant association remained between CTNNB1 3′‐untranslated region (UTR) variant rs2953 and SCZ susceptibility (additive and dominant model) after gender and age were adjusted. rs2953 disrupted the binding of CTNNB1 and miR‐485. miR‐485 significantly suppressed the luciferase activity of CTNNB1‐T vector by binding to the CTNNB1 3′‐UTR containing the T allele of rs2953. The mRNA expression of CTNNB1 can be used as a biomarker for the diagnosis of SCZ and BD. The 3′‐UTR variant rs2953 in CTNNB1 influences the risk of SCZ in the Han Chinese population and modifies the binding of miR‐485 to CTNNB1.  相似文献   

18.
This work aimed to investigate miR‐93‐5p expression in tumor tissue and its in vitro effects in colorectal cancer (CRC) by targeting programmed death ligand‐1 (PD‐L1). MiR‐93‐5p and PD‐L1 expression was detected in CRC and adjacent normal tissues by quantitative real‐time polymerase chain reaction and immunohistochemistry. The correlation between miR‐93‐5p and PD‐L1 was validated by a dual‐luciferase reporter assay. HCT116 and SW480 cells were divided into blank, miR‐NC, miR‐93‐5p mimics, miR‐93‐5p inhibitor, PD‐L1 small interfering RNA (siRNA) and miR‐93‐5p inhibitor + PD‐L1 siRNA groups, and wound‐healing and transwell assays were performed to detect cell migration and invasion, respectively. Protein expression was measured by western blotting. The secretion of cytokines was detected in the CRC cell/T coculture models. MiR‐93‐5p was downregulated in CRC tissues with upregulated PD‐L1. In PD‐L1‐negative patients, miR‐93‐5p expression was increased compared with that in PD‐L1‐positive patients. MiR‐93‐5p and PD‐L1 expression levels were associated with the tumor differentiation, lymphatic metastasis, TNM, Duke's stage, and prognosis of CRC. PD‐L1 siRNA weakened the migration and invasion abilities via decreased expression of matrix metalloproteinase‐1 (MMP‐1), ‐2, and ‐9, and these effects were abolished by the miR‐93‐5p inhibitor. Additionally, anti‐PD‐L1 upregulated the expressions of interleukin‐2 (IL‐2), tumor necrosis factor‐α (TNF‐α), and interferon γ (IFN‐γ) in the coculture of T cells with CRC cells, but downregulated the expressions of IL‐1β, IL‐10, and TGF‐β. However, these changes were partially reversed by miR‐93‐5p inhibition. miR‐93‐5p is expected to be a novel target for CRC treatment since it decreases the migration and invasion, as well as the immune evasion, of CRC cells via targeting PD‐L1.  相似文献   

19.
20.
Colorectal cancer (CRC) is the second leading cause of cancer‐related deaths worldwide. However, a biomarker for a sensitive and simple diagnostic test and highly effective target therapy of CRC is still clinically unavailable. This study is to investigate the evidence and significance of plasma GPC1 positive exosomes as a biomarker of CRC. Results showed that GPC1+ exosomes were successfully isolated from tissues and plasma. The percentage of GPC1+ exosomes and the GPC1 protein expression in exosomes from tumour tissues and plasma of CRC patients before surgical treatment was significantly elevated compared to that in the peritumoural tissues and the plasma of healthy controls. miR‐96‐5p and miR‐149 expression in tumour tissues and plasma of CRC patients as well as in the GPC1+ exosomes from CRC patients were significantly decreased compared to that in the peritumoural tissues and the plasma of healthy controls. Two months after surgical treatment, levels of all tested markers significantly normalized. Overexpression of miR‐96‐5p and miR‐149 significantly decreased GPC1 expression in HT‐29 and HCT‐116 cells, xenograft tumours, plasma in mice bearing HT‐29 and HCT‐116 tumours, and the secretion of GPC1+ exosomes from the HT‐29 and HCT‐116 cells and xenograft tumours. Overexpression of miR‐96‐5p and miR‐149 significantly decreased cell viability and increased cell apoptosis in HT‐29 and HCT‐116 cells, and inhibited the growth of xenograft HT‐29 and HCT‐116 tumours. In conclusion, the increased plasma GPC1+ exosomes and reduced plasma miR‐96‐5p and miR‐149 expression are specific markers for the diagnosis of CRC and targets for the therapy of CRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号