首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of mouse Leydig cell cultures with luteinizing hormone (LH) or with 8-bromo-cAMP (8-Br-cAMP) for 5 days elicited a dose- and time-dependent increase in the microsomal cytochrome P-450 enzyme activities. 17 alpha-Hydroxylase and C17-20 lyase as well as a parallel increase in testosterone production. Reduction of the oxygen tension from 19 to 1% resulted in a greater increase in enzyme activity. Induction of microsomal cytochrome P-450 activities was 35 to 50% greater with 8-Br-cAMP than with LH and the increase in C17-20 lyase activity was 4-fold greater than that of 17 alpha-hydroxylase. Maximal induction of P-450 enzyme activities was observed between 3 and 5 days of continual treatment with 8-Br-cAMP or LH. Removal of 8-Br-cAMP from the culture medium inhibited any further increase in C17-20 lyase activity and testosterone production. The role of protein synthesis in the induction process was investigated by incubating Leydig cell cultures with and without cycloheximide between 24 and 48 h of treatment with 8-Br-cAMP. Cycloheximide completely inhibited the induction of C17-20 lyase activity and the increase in testosterone production. After removal of the inhibitor, cultures responded in a manner that paralleled induction in cultures that had not been treated with cycloheximide. In both cases, a 24-h lag period occurred prior to an increase in cytochrome P-450 activity. These data suggest that the increase in microsomal cytochrome P-450 activities represents an increase in enzyme synthesis and, furthermore, that reduction of oxygen tension decreases degradation of newly synthesized Leydig cell microsomal cytochrome P-450 activities as recently reported (Quinn, P.G., and Payne, A.H. (1984) J. Biol. Chem. 259, 4130-4135).  相似文献   

2.
The regulation of the novo synthesis of the microsomal cytochrome P-450 enzyme, P-450(17 alpha), was studied in mouse Leydig cell cultures. Chronic treatment with 0.05 mM 8-Br-cAMP (cAMP) caused a time-dependent increase in 17 alpha-hydroxylase activity and in the amount of P-450(17 alpha), quantitated by immunoblotting. This increase in both activity and amount was enhanced by inhibiting testosterone production with aminoglutethimide, an inhibitor of cholesterol side-chain cleavage or SU 10603, an inhibitor of 17 alpha-hydroxylase. To examine the mechanism by which cAMP or cAMP plus inhibitors of testosterone production increased the activity and amount of P-450(17 alpha), changes in the rate of de novo synthesis were studied by measuring [35S]methionine incorporation into newly synthesized protein. Treatment with cAMP plus aminoglutethimide or SU 10603 caused a 2-fold or greater increase in the rate of de novo synthesis of P-450(17 alpha) compared to treatment with cAMP only. The addition of exogenous testosterone reversed this increase in the rate of synthesis, indicating that testosterone modulates the extent of cAMP-stimulated induction of P-450(17 alpha). This negative effect of testosterone could be mimicked by the addition of the androgen agonist, mibolerone, and prevented by the addition of the antiandrogen, hydroxyflutamide. Neither estradiol nor dexamethasone had any effect on the synthesis of P-450(17 alpha). Studies on the degradation of newly synthesized P-450(17 alpha) demonstrated that testosterone had no effect on the decay of P-450(17 alpha) during the first 24 h but caused a significant increase in the rate of decay between 24 and 48 h. These data indicate that testosterone produced during cAMP induction of P-450(17 alpha) negatively regulates the amount of this cytochrome P-450 enzyme by two distinct mechanisms: by repressing cAMP-induced synthesis of P-450(17 alpha) by an androgen receptor-mediated mechanism and by increasing the rate of degradation of P-450(17 alpha). A model is proposed for the regulation of P-450(17 alpha) in Leydig cells.  相似文献   

3.
Luteinizing hormone is the major regulator of Leydig cell differentiation and steroidogenic function. A number of hormones produced by the Leydig cell (e.g. estrogen, angiotensin, CRF, vasopressin) and the tubular compartment (inhibin, TGF beta), can influence both acute and long-term actions of LH. Conversely, hormones produced in the Leydig cells modulate tubular function (e.g. androgen, beta-endorphin, oxytocin). The LH stimulatory event can be negatively influenced by the action of angiotensin II through the guanyl nucleotide inhibitory unit of adenylate cyclase. We have recently discovered an action of corticotrophin releasing hormone through specific high-affinity low-capacity receptors in the Leydig cells which involves a pertussis toxin insensitive guanyl nucleotide regulatory unit with interaction between signalling pathways and resulting inhibition of LH induced cAMP generation and consequently of steroidogenesis. In contrast to other tissues the CRF receptor in the Leydig cells did not couple to Gs. CRF action is exerted through direct or indirect action of protein kinase C, at the level of the catalytic subunit of adenylate cyclase. Physiological increases in endogenous LH cause positive regulation of membrane receptors and steroidogenesis, while major elevations in circulating gonadotropin can induce down-regulation of LH receptors and desensitization of steroid responses in the adult cell. Gonadotropin-induced desensitization in adult rat tests include an estrogen mediated steroidogenic lesion of the microsomal enzymes 17 alpha-hydroxylase/17,20-desmolase. For further understanding of the regulation of this key enzyme of the androgen pathway the rat P450(17) alpha cDNA was cloned and sequenced. This cDNA expressed in COS-1 cells 17 alpha-hydroxylase/17,20-desmolase activities. From the deduced amino acid sequence, two transmembrane regions were identified, a signal peptide for insertion in the ER, and a 2nd transmembrane region separated from the first by 122 amino acids. The carboxy terminal non-transmembrane region possesses 4 hydrophobic clefts, of which cleft II would contain the putative steroid binding site for both hydroxylase and lyase activities. The rat cDNA was employed to evaluate the hormonal regulation of mRNA levels in adult and fetal Leydig cells. Low dose hCG treatment caused an early increase in mRNA levels followed by a return to control values at later times, while with higher desensitizing doses the initial increase in mRNA was followed by a marked reduction in mRNA at 24 h and a small recovery at 48 h. Fetal rat Leydig cells treated with E2 showed a 70% decrease in P450 mRNA levels, and testosterone production closely followed the changes in mRNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The effect of aging in rats on serum and intratesticular testosterone levels, microsomal steroidogenic enzyme activities and microsomal cytochrome P-450 was studied. Serum testosterone levels were highest in 11-wk-old rats, declined at age 16 wk and further declined between ages 7 and 21 mo. Intratesticular testosterone levels in 21-mo-old rats were significantly lower than those of the other groups. The activity of 17 alpha-hydroxylase and C17-20 lyase, as well as cytochrome P-450, decreased significantly in 21-mo-old rats. The activity of 17 beta-hydroxysteroid oxidoreductase increased from 11 wk to 16 wk of age and then declined by 21 mo of age to the levels of 11-wk-old animals. Similar changes in delta 5-3,3-hydroxysteroid dehydrogenase coupled with delta 5-delta 4 isomerase activities were observed, but were not statistically significant. These results suggest that the decline in testosterone production in old rats is predominantly a result of decreased oxygenase activity. Inasmuch as oxygenases are gonadotropin dependent, our results support the hypothesis that gonadotropin deficiency is the major factor responsible for Leydig cell dysfunction in old rats. Further, the decline in the ratio of 17 alpha-hydroxylase to C17-20 lyase with aging suggests that other factors affect these enzymes as well as the reduction in cytochrome P-450.  相似文献   

5.
The biochemical basis for the complex effects of the anti-cancer drug cisplatin on hepatic cytochrome P-450 activity was studied in adult male rat liver using P-450 form-specific steroid hydroxylase assays and antibody probes. Cisplatin treatment of adult male rats resulted in a marked and prolonged feminization of the pattern of P-450 enzymes expressed in hepatic tissue. The adult male-specific cytochrome P-450 forms designated P-450 2c (P-450 gene IIC11), P-450 2a (gene IIIA2), and P-450 RLM2 were decreased by 70-90% after 7-14 days, with parallel decreases in their respectively associated microsomal steroid hydroxylase activities. Concomitantly, hepatic levels of the female-predominant enzymes P-450 3 (gene IIA1) and P-450j (gene IIE1) were elevated approximately 2-4-fold. The female-specific microsomal enzyme androstenedione 5 alpha-reductase was induced approximately 20-fold by cisplatin; however, no elevation of the female-specific P-450 2d was detected. The underlying hormonal basis for these effects of cisplatin was then examined. Serum testosterone levels were found to be depleted by cisplatin in a time- and dose-dependent manner which correlated with the observed changes in these hepatic enzymes. Furthermore, castration of adult rats altered the profile of these enzymes in a manner which resembled that observed with cisplatin treatment, suggesting that androgen depletion was the primary cause for the observed feminization of hepatic enzyme expression. Consistent with this possibility, the synthetic androgen methyltrienolone effectively blocked the changes in hepatic enzyme expression induced by cisplatin. Moreover, hepatic enzyme feminization was significantly reversed by chorionic gonadotropin, which fully restored serum testosterone levels in the cisplatin-treated rat. Luteinizing hormone-releasing hormone challenge experiments demonstrated that the responsiveness of the pituitary to this hypothalamic regulator of testicular androgen production was unimpaired by cisplatin treatment, indicating that hypothalamic production or secretion of luteinizing hormone-releasing hormone may be deficient in the cisplatin-treated animals. These studies establish that the effects of cisplatin on hepatic P-450 enzyme expression result from its interruption of the hypothalamic-pituitary stimulation of testicular androgen production and that this, in turn, leads to a depletion of circulating androgens required for maintenance of normal P-450 enzyme expression in adult male rats.  相似文献   

6.
1. Monooxygenase activities have been examined in rat liver to determine the effects of castration and hypophysectomy on cytochrome P-450 species. In adult males, hypophysectomy caused a decrease of total P-450 concentration, aniline hydroxylase, benzopyrene hydroxylase, benzphetamine demethylase, testosterone hydroxylase and imipramine hydroxylase and demethylase activities. The treatment of hypophysectomized animals with human growth hormone or testosterone did not restore the full activity. 2. When probed with antibodies, microsomes from hypophysectomized males and females exhibited an intense reaction with a polyclonal anti-(phenobarbital-induced P-450) which was not observed with a monoclonal antibody of anti-(phenobarbital-induced P-450). 3. These microsomal preparations also reacted with an antibody raised against a developmentally regulated P-450. No sex difference could be detected with this antibody. Furthermore, administration of human growth hormone to hypophysectomized males prevented this immunoreaction. 4. Total RNA has been prepared from the same liver; when probed with cDNAs, no changes occurred in the content in P-450 b/e, PB 24 (a constitutive member of the phenobarbital subfamily) and phenobarbital-inducible mRNA for UDP-glucuronosyltransferase. 5. In contrast, P-450 mRNA induced by pregnenolone 16 alpha-carbonitrile was modulated by hormonal manipulations: lower in females and castrated males than in intact males, increased in both sexes after hypophysectomy. Treatment of hypophysectomized males with human growth hormone abolished this rise in pregnenolone-16 alpha-carbonitrile-induced P-450 mRNA accumulation. Data collected in this study support the assumption that hypophysectomy acts differently on the regulation of various P-450 isozymes and that this regulation clearly does not involve the phenobarbital subfamily of P-450s.  相似文献   

7.
When a single injection of 500 I.U. of human chorionic gonadotropin (hCG) is given to rats there is an initial acute rise of plasma testosterone and of testicular content for both cyclic AMP and testosterone. This response correlates with an increase in both lyase and 17 alpha-hydroxylase activities. Thereafter both plasma and testicular testosterone decline and do not increase after a second injection of hCG. During this period of desensitization, isolated Leydig cells were insensitive to the steroidogenic stimulatory effect of both hCG and dibutyryl cyclic AMP. The post-cyclic AMP block is not due to an alteration of the cyclic AMP-dependent protein kinase but it is correlated with a decrease in both lyase and 17 alpha-hydroxylase activities of the Leydig cell's microsomes. This decrease is not caused by the absence of the recently described cytosol activator of this enzyme because its addition did not restore the enzymatic activity. Within 60 to 96 h after hCG injection there was a spontaneous increase of both plasma and testicular testosterone and this parallels the recovery of lyase and 17 alpha-hydroxylase activities. These results suggest that both enzymatic activities are regulated, directly or indirectly, by hCG, and that this is partly responsible for the hCG-induced steroidogenic refractoriness of Leydig cells.  相似文献   

8.
The treatment of male rats with Hg2+ resulted in significant alterations in heme and hemoprotein metabolism in the adrenal gland which, in turn, were reflected in abnormal steroidogenic activities and steroid output. Twenty-four hours after the administration of 30 mumol of HgCl2/kg (sc) the mitochondrial heme and cytochrome P-450 concentrations increased by approximately 50%. Also, Hg2+ treatment stimulated a porphyrinogenic response which included an 11-fold increase in the activity of delta-aminolevulinate synthetase. The increase in mitochondrial cytochrome P-450 content was reflected in elevated steroid 11 beta-hydroxylase and cholesterol side-chain cleavage activities. In contrast, Hg2+ treatment resulted in decreased concentrations of microsomal cytochrome P-450 (-75%) and heme (-45%). Similarly, the reduction in the microsomal cytochrome P-450 content was accompanied by reduced steroid 21 alpha-hydroxylase and benzo[alpha]pyrene hydroxylase activities. The mechanisms responsible for the loss of the microsomal cytochrome P-450 content appeared to involve a selective impairment of formation of the holocytochrome as well as an enhanced rate of heme degradation. This suggestion is made on the basis of findings that (a) the decrease in the microsomal cytochrome P-450 content was accompanied by a sevenfold increase in the activity of adrenal heme oxygenase, (b) no decrease in apocytochrome P-450 could be detected in sodium dodecyl sulfate-gel electrophoresis of the solubilized microsomal fractions stained for heme, and (c) the concentration of adrenal microsomal cytochrome b5 was significantly increased in the Hg2+-treated animals. It is suggested that Hg2+ directly caused a defect in adrenal steroid biosynthesis by inhibiting the activity of 21 alpha-hydroxylase. The apparent physiological consequences of this effect included lowered plasma levels of corticosterone and elevated concentrations of progesterone and dehydroepiandrosterone. This abnormal plasma steroid profile is indicative of a 21 alpha-hydroxylase impairment.  相似文献   

9.
The control of androgen production by the Leydig cell is dependent upon the episodic secretion of hormone (LH), which is released from the anterior pituitary gland in pulses of high biological activity. This mode of episodic LH secretion supports steroidogenic enzyme activity in the testis through interaction with LH receptors and stimulation of the adenylate cyclase/protein kinase sequence, leading to phosphorylation of key intermediates in the steroid biosynthetic pathway. The plasma membrane events that are rapidly activated by the specific interaction of LH or hCG with Leydig cell receptors include increased binding of guanyl nucleotide, and stimulation of cAMP-independent, Ca2+dependent phosphorylation of a 44,500 Mr protein, with the characteristics of the adenylate cyclase nucleotide regulatory unit. Hormonal activation of adenylate cyclase is affected by Ca2+ with the same concentration-dependence, suggesting that nucleotide-induced phosphorylation is related to activation of the catalytic cyclase unit.In addition to the characteristic increases in pregnenolone synthesis and androgen production, gonadotropin-stimulated Leydig cells show prominent changes in LH receptor content and steroidogenic activity that modify their subsequent responses to hormonal signals. Thus, after exposure to increased LH and hCG levels in vivo and in vitro, LH receptors show an initial transient increase (up-regulation) followed by a marked decrease (down-regulation) and a prolonged depletion of LH receptor sites. Large doses of hCG cause “early” (prior to pregnenolone) and “late” steroidogenic lesions (17α-hydroxylase, 17–20 desmolase) that are independent of receptor loss. The early lesion is partly due to reduced activity of HMG CoA reductase, and is mainly attributable to the increased activity of an inhibitory protein factor that modulates the activity of cholesterol side chain cleavage enzyme in Leydig cell mitochondria. In contrast, the late steroidogenic lesion is related to the nuclear actions of E2 produced during hormonal action. After hCG stimulation, an increase in nuclear E2 binding was accompanied by an early rise of RNA polymerase activities within 45 min coincident with the maximal increases in circulating testosterone and estradiol levels. These events were followed by the emergence of an E2-induced protein of Mr 27,000 at 3–6 h, and by reduction in the activity of 17α-hydroxylase/17–20 desmolase, and a decrease in microsomal cytochrome P-450. The negative effects of LH upon receptors and steroidogenic responses appear to be characteristic of the adult Leydig cell, and do not occur in the immature or fetal Leydig cell, where only up-regulation was demonstrated in vivo or in vitro. The temporal and functional nature of the steroidogenic lesions provide further insight into the intracellular control mechanisms that regulate the androgen biosynthetic pathways of the mature Leydig cell.  相似文献   

10.
In addition to causing Müllerian duct regression in fetal males, Müllerian inhibiting substance (MIS) inhibits the expression of the bifunctional cytochrome P450, C17 hydroxylase/C(17-20) lyase (Cyp17), the enzyme that catalyzes the committed step in sex steroid synthesis. To investigate the paracrine effects of MIS on steroidogenic activity, we have performed assays with microsomes from mouse MA-10 Leydig cells. With microsomes from untreated MA-10 cells, progesterone was largely metabolized by 5alpha-reductase and subsequently converted by 3-keto steroid reductases to allopregnanolone and epiallopregnanolone. Addition of cAMP to the cells shifted microsomal steroid production to the Cyp17 product androstenedione and its 5alpha,3beta-reduced form, epiandrosterone. Microsomes from MIS-treated cells were less active with the progesterone substrate than those of untreated cells but co-treatment of the cells with both MIS and cAMP mitigated the cAMP-induced shift of the microsomes to androstenedione production. Quantitative analyses of steroid production by Cyp17 showed that cAMP decreased the amount of 17-hydroxyprogesterone produced relative to the androstenedione, suggesting that cAMP signaling lowers the efficiency of the Cyp17 hydroxylase activity or else increases the efficiency of its lyase activity. Addition of MIS to the cAMP-treated cells partially reversed this effect, as well. These results indicate that cAMP induces MA-10 cells to switch from producing 5alpha-reduced progesterone metabolites to producing androstenedione and its metabolites by increasing Cyp17 expression and its relative lyase activity, both of which are inhibited by MIS.  相似文献   

11.
A new form of cytochrome P-450 was partially purified from hepatic microsomes of neonatally imprinted rats (adult male and adult male castrated at four weeks of age). This new form of cytochrome P-450 appears to have an apparent molecular weight of approximately 50,000 daltons as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis. It appears that this form of cytochrome P-450 is either absent or present in low concentrations in cytochrome P-450 preparations isolated from neonatally nonimprinted rats (adult female and adult male castrated at birth). Reconstitution of testosterone hydroxylase and benzphetamine N-demethylase activities of this partially purified cytochrome P-450 revealed that the presence of testosterone 16α-hydroxylase activity, an imprintable microsomal enzyme, was in parallel with the imprinting status of the animals; a significantly higher activity was detected in the neonatally imprinted than that of the nonimprinted animals. This was in contrast to the nonimprintable benzphetamine N-demethylase, testosterone 7α-and 6β-hydroxylase activities which exhibited no correlation with the imprinting status of the animals. We have prepared antisera from rabbits using the partially purified cytochrome P-450 preparations from adult male rats as antigens. These antisera inhibited microsomal testosterone 16α- and 7α-hydroxylase activities in a concentration-dependent manner, without impairing 6β-hydroxylase activity. These data suggest that the partially purified cytochrome P-450 from adult male rats consists of both imprintable (16α-) and nonimprintable (7α-) testosterone hydroxylase activities. The antisera formed immunoprecipitant lines in the Ouchterlony double diffusion plates with partially purified cytochrome P-450 from both neonatally imprinted and nonimprinted adult rats. The immunoprecipitant lines, as stained by coomassie blue, suggest the homology of the cytochrome P-450 preparations from neonatally imprinted and nonimprinted rats. Immunoabsorption of the antisera against neonatally nonimprinted, partially purified cytochrome P-450 completely removed the immunoprecipitant lines without appreciably impairing the inhibitory effects of antisera on the microsomal testosterone 16α-and 7α-hydroxylase activities. In contrast, immunoabsorption of the antisera against partially purified cytochrome P-450 from adult male rats (imprinted) abolished completely both the immunoprecipitant lines and the inhibition on microsomal testosterone hydroxylation reaction (16α and 7α). The inhibitory actin of antisera on testosterone hydroxyulation was also abolished upon boiling the antisera at 100°C for 5 minutes. The biochemical and immunochemical data in this study suggest that the neonatally imprintable form or forms of hepatic microsomal cytochrome P-450 accounts for a small fraction of the bulk of total cytochrome P-450. However, the existence of this form of cytochrome P-450 is regulated by gonadal hormones during the neonatal period and accounts for the major imprintable sex difference in drug and steroid metabolism in adulthood.  相似文献   

12.
Cytochrome P-450-dependent steroid hormone metabolism was studied in isolated human liver microsomal fractions. 6 beta hydroxylation was shown to be the major route of NADPH-dependent oxidative metabolism (greater than or equal to 75% of total hydroxylated metabolites) with each of three steroid substrates, testosterone, androstenedione, and progesterone. With testosterone, 2 beta and 15 beta hydroxylation also occurred, proceeding at approximately 10% and 3-4% the rate of microsomal 6 beta hydroxylation, respectively, in each of the liver samples examined. Rates for the three steroid 6 beta-hydroxylase activities were highly correlated with each other (r = 0.95-0.97 for 25 individual microsomal preparations), suggesting that a single human liver P-450 enzyme is the principal microsomal 6 beta-hydroxylase catalyst with all three steroid substrates. Steroid 6 beta-hydroxylase rates correlated well with the specific content of human P-450NF (r = 0.69-0.83) and with its associated nifedipine oxidase activity (r = 0.80), but not with the rates for debrisoquine 4-hydroxylase, phenacetin O-deethylase, or S-mephenytoin 4-hydroxylase activities or the specific contents of their respective associated P-450 forms in these same liver microsomes (r less than 0.2). These correlative observations were supported by the selective inhibition of human liver microsomal 6 beta hydroxylation by antibody raised to either human P-450NF or a rat homolog, P-450 PB-2a. Anti-P-450NF also inhibited human microsomal testosterone 2 beta and 15 beta hydroxylation in parallel to the 6 beta-hydroxylation reaction. This antibody also inhibited rat P-450 2a-dependent steroid hormone 6 beta hydroxylation in uninduced adult male rat liver microsomes but not the steroid 2 alpha, 16 alpha, or 7 alpha hydroxylation reactions catalyzed by other rat P-450 forms. Finally, steroid 6 beta hydroxylation catalyzed by either human or rat liver microsomes was selectively inhibited by NADPH-dependent complexation of the macrolide antibiotic triacetyloleandomycin, a reaction that is characteristic of members of the P-450NF gene subfamily (P-450 IIIA subfamily). These observations establish that P-450NF or a closely related enzyme is the major catalyst of steroid hormone 6 beta hydroxylation in human liver microsomes, and furthermore suggest that steroid 6 beta hydroxylation may provide a useful, noninvasive monitor for the monooxygenase activity of this hepatic P-450 form.  相似文献   

13.
We have studied the effects of ACTH treatment on steroid hydroxylase activities in the inner (zona reticularis) and outer (zona fasciculata plus zona glomerulosa) zones of the guinea pig adrenal cortex. Animals received 5 or 10 U of ACTH daily for 6 days and enzyme activities were then assessed in isolated microsomal or mitochondrial preparations. In control animals, microsomal cytochrome P-450 concentrations were greater in the inner than outer zone, but mitochondrial P-450 levels were similar in the two zones. Microsomal 17 alpha-hydroxylase and mitochondrial 11 beta-hydroxylase activities were greater in the outer than inner zone, but microsomal 21-hydroxylase activity was greater in the inner zone. ACTH treatment decreased cytochrome P-450 concentrations in inner but not outer zone microsomes; mitochondrial P-450 levels were unaffected in both zones. ACTH caused a dose-dependent increase in inner zone 17 alpha-hydroxylase activity and decrease in 21-hydroxylase activity without affecting the activity of either enzyme in outer zone microsomes. ACTH also decreased 11 beta-hydroxylase activity in outer but not inner zone mitochondrial preparations. The net effect of ACTH treatment was to diminish the differences in steroid metabolism between the two zones. The results indicate that the effects of ACTH on steroid hydroxylase activities are both zone- and enzyme-dependent, suggesting the existence of multiple and independent regulatory mechanisms.  相似文献   

14.
Rat hepatic cytochrome P-450 form 3 (testosterone 7 alpha-hydroxylase; P-450 gene IIA1) and P-450 form RLM2 (testosterone 15 alpha-hydroxylase; P-450 gene IIA2) are 88% identical in primary structure, yet they hydroxylate testosterone with distinct and apparently unrelated regioselectivities. In this study, androstenedione and progesterone were used to assess the regioselectivity and stereospecificity of these two P-450 enzymes towards other steroid substrates. Although P-450 RLM2 exhibited low 7 alpha-hydroxylase activity with testosterone or progesterone as substrate (turnover number less than or equal to 1-2 nmol of metabolite/min per nmol of P-450), it did catalyse androstenedione 7 alpha-hydroxylation at a high rate (21 min-1) which exceeded that of P-450 3 (7 min-1). However, whereas P-450 3 exhibited a high specificity for hydroxylation of these steroids at the 7 alpha position (95-97% of total activity), P-450 RLM2 actively metabolized these compounds at four or more major sites including the nearby C-15 position, which dominated in the case of testosterone and progesterone. The observation that androstenedione is actively 7 alpha-hydroxylated by purified P-450 RLM2 suggested that this P-450 enzyme might make significant contributions to microsomal androstenedione 7 alpha-hydroxylation, an activity that was previously reported to be associated with immunoreactive P-450 3. Antibody inhibition experiments were therefore carried out in liver microsomes using polyclonal anti-(P-450 3) antibodies which cross-react with P-450 RLM2, and using a monoclonal antibody that is reactive with and inhibitory towards P-450 3 but not P-450 RLM2. P-450 3 was thus shown to catalyse only around 35% of the total androstenedione 7 alpha-hydroxylase activity in uninduced adult male rat liver microsomes, with the balance attributed to P-450 RLM2. The P-450-3-dependent 7 alpha-hydroxylase activity was increased to approximately 65% of the total in phenobarbital-induced adult male microsomes, and to greater than 90% of the total in untreated adult female rat liver microsomes. These observations are consistent with the inducibility of P-450 3 by phenobarbital and with the absence of P-450 RLM2 from adult female rat liver respectively. These findings establish that P-450 RLM2 and P-450 3 can both contribute significantly to microsomal androstenedione 7 alpha-hydroxylation, thus demonstrating that the 7 alpha-hydroxylation of this androgen does not serve as a specific catalytic monitor for microsomal P-450 3.  相似文献   

15.
Lindane, the gamma isomer of hexachlorocyclohexane (HCH), is one of the oldest synthetic pesticides still in use worldwide. Numerous reports have shown that this pesticide adversely affects reproductive function in animals. Although the pathogenesis of reproductive dysfunction is not yet fully understood, recent reports indicate that lindane can directly inhibit adrenal and gonadal steroidogenesis. Because Leydig cells play a pivotal role in male reproductive function through the production of testosterone, the mouse MA-10 Leydig tumor cell line was used to assess the potential effects of gamma-HCH and its isomers, alpha-HCH and delta-HCH, on steroid production, steroidogenic enzyme expression and activity, and steroidogenic acute regulatory (StAR) protein expression. StAR mediates the rate-limiting and acutely regulated step in hormone-stimulated steroidogenesis, the intramitochondrial transfer of cholesterol to the P450(scc) enzyme. Our studies demonstrate that alpha-, delta-, and gamma-HCH inhibited dibutyryl ([Bu](2)) cAMP-stimulated progesterone production in MA-10 cells in a dosage-dependent manner without affecting general protein synthesis; and protein kinase A or steroidogenic enzyme expression, activity, or both. In contrast, each of these isomers dramatically reduced (Bu)(2)cAMP-stimulated StAR protein levels. Therefore, our results are consistent with the hypothesis that alpha-, delta-, and gamma-HCH inhibited steroidogenesis by reducing StAR protein expression, an action that may contribute to the pathogenesis of lindane-induced reproductive dysfunction.  相似文献   

16.
Regulation of cytochromes P-450 21-hydroxylase (P-450C21) and P-450 17 alpha-hydroxylase/C17,20-lyase (P-450(17) alpha,lyase) activities and impairment of this regulation by Aroclor 1254 was studied in guinea-pig adrenal microsomes. In a membrane depleted system, a decrease in the normally predominant, P-450C21 activity and an increase in P-450(17) alpha,lyase activities was observed. The same deviations were observed in intact microsomes with increase in the reaction temperature (0-40 degrees C). Breaks in Arrhenius plots for activities of P-450C21 and P-450(17) alpha,lyase correlate with transition temperatures reported for the microsomal membrane. These results point to: (1) preference of a gel state membrane for catalytic expression of P-450C21 suggesting a clustered organization of this P-450 species with reductase; (2) preference of a fluid membrane for lyase activity suggesting a random collision mechanism for reduction of P-450(17) alpha,lyase. Aroclor 1254 introduced to reaction mixtures containing intact microsomes elicited basically the same changes as caused by depletion of the microsomal membrane or by increase in the incubation temperature. Lack of effect of Aroclor 1254 on P-450C21 and P-450(17) alpha,lyase activities in the membrane depleted system demonstrates that its interference with monooxygenase activities is mediated by the microsomal membrane. The similarities between altered cytochrome P-450 mediated activities in the presence of Aroclor 1254 and the deviations observed in the membrane depleted system or upon increase in the incubation temperature may suggest that this chemical exerts its impacts by influencing membrane fluidity.  相似文献   

17.
The catalytic properties of the testis microsomal P-450, termed P-450sccII, have been studied in a refined assay system which consists of P-450sccII (13 nmol of P-450 heme/mg of protein) and its reductase has been purified extensively from pig testis. The results indicated that P-450sccII was highly active in catalyzing hydroxylation of 11 beta-hydroxyprogesterone at the 17 alpha-position to give 21-deoxycortisol and cleavage of 17 alpha-hydroxyprogesterone at the 17-20 bond to give androstenedione with turnover numbers of 25 and 30 mol/min X mol of P-450, respectively. In contrast, many physiologically important corticosteroids we tested were found to be poor substrates for both the hydroxylase and lyase reactions. The possible reason for the importance of these substrate specificity of P-450sccII in production of both corticosteroids and androgens in the endocrine tissues is discussed. P-450sccII also catalyzed conversion of testosterone to androstenedione, but 18O experiments failed to show incorporation of atmospheric oxygen into the androstenedione formed. However, this does not preclude the possibility that the P-450-bound intermediate gem-diol stereoselectively dehydrates to give the nonlabeled ketosteroid. In addition to these steroid-oxidizing activities, P-450sccII revealed considerable specificities toward various xenobiotics, suggesting that P-450sccII and liver microsomal P-450 are basically similar as regards enzymatic functions and activities.  相似文献   

18.
Insecticide endosulfan significantly inhibited testicular androgen biosynthesis in adult rats, when fed (po) at 7.5 and 10 mg/kg body weight dose levels, consecutively for 15 and 30 days. No appreciable alterations were apparent in body weights, testicular wet weights, and cytosolic and microsomal protein contents of testis in treated rats. Profound decrease in the levels of plasma gonadotrophins (FSH and LH) along with plasma testosterone and testicular testosterone were observed at both the doses of endosulfan, particularly after the longer exposure of 30 days. Activities of steroidogenic enzymes studied (3 beta- and 17 beta-hydroxysteroid dehydrogenases) were considerably lowered on longer exposure of endosulfan. A significant decrease in the contents/activities of microsomal cytochrome P-450 and related mixed function oxidases (MFOs) in testis of treated rats was also observed, along with a marked inhibition in the activity of cytosolic conjugation enzyme, glutathione-S-transferase at both doses studied. These biochemical changes were reversed when the endosulfan treatment was withdrawn.  相似文献   

19.
We have found cytochrome P-450(17alpha) in the islets of Langerhans of rat pancreas. Its existence coincided with that of insulin and demarcated those of glucagon and somatostatin, demonstrating the localization in beta-cells. The enzyme has not only 17alpha-hydroxylase activity but also lyase one, which is a prerequisite for androgen biosynthesis. The pancreatic microsomes converted progesterone mainly to androstenedione with a minor production of 17alpha-hydroxyprogesterone. Due to a low activity of the built-in lyase, cytochrome P-450(17alpha) requires a sufficient electron-transfer from P-450 reductase or presence of an activator to promote the C-C bond cleavage. In beta-cells, P-450 reductase was abundant and could efficiently transfer electrons to P-450(17alpha). Actually, inhibition with anti-P-450 reductase or limitation of NADPH preferentially reduced the lyase activity. Androstenedione was accumulated when its further metabolism was suppressed. We also found localization of cytochrome P-450scc and 3beta-hydroxysteroid dehydrogenase in beta-cells. These results indicate that the immediate substrate for androgen formation, progesterone, is intracellularly produced and is converted mainly to androstenedione with support by an efficient electron supply from P-450 reductase. The product was supposed to be further metabolized to the reduced derivatives such as testosterone, 5alpha-androstanedione, and dihydrotestosterone, which would act as local steroids in the islets of Langerhans.  相似文献   

20.
The cytochrome P-450 of gonadal microsomes is an integral component of the steroid converting enzymes, 17 alpha-hydroxylase and 17,20-lyase. Interaction of the steroid substrates with this cytochrome results in a shift in the Soret band as measured by difference spectroscopy. In these studies it is shown that in contrast to placental microsomal cytochrome P-450 which binds C19 steroids, testis microsomal cytochrome P-450 primarily binds C21 steroids. However, addition of a 17 alpha- methyl, 17 beta-acetate or a 17 beta-benzoate group to testosterone permits interaction. The addition of hydroxyl or methyl groups to other positions does not affect binding. The presence of multiple oxygen functions on C21 steroids, as in cortisol and corticosterone, precludes interaction. At least one oxygen function seems necessary for binding as 5 alpha- and 5 beta-pregnane do not bind whereas 20-deoxypregnenolone (5-pregnen-3 beta-ol) does bind. These findings indicate that factors in addition to hydrophobic interactions dictate the binding of steroid substrates to testis microsomal cytochrome P-450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号