首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The release of Ca2+ from vesicles of heavy sarcoplasmic reticulum after its accumulation due to hydrolysis of ATP, GTP, CTP, UTP or ITP has been studied using Antipyrylazo III, a metal-chromic Ca-indicator. All the studied substrates of the Ca-pump provide Ca2+ accumulation inside the heavy sarcoplasmic reticulum vesicles, the spontaneous Ca2+ outflux rate being different for different nucleoside triphosphates. It is only ATP that provides Ca-(caffeine)-induced Ca2+ release, however AMP, ADP, beta, gamma-methylene-ATP induce Ca2+ ejection in the presence of nonadenylic nucleotides. The ruthenium red (10(-7M) inhibits the induced ejection of Ca2+ from vesicles of the heavy sarcoplasmic reticulum, but does not prevent the spontaneous release of Ca2+ in the same concentrations. A conclusion is drawn that besides Ca-channels sensitive to Ca2+ and caffeine in the presence of ATP (or to AMP, ADP, beta, gamma-methylene-ATP in the presence of nonadenylic nucleotides) and possessing high sensitivity to the ruthenium red there is another pathway for Ca2+ in the heavy reticulum membranes along which its spontaneous release occurs after the substrate exhaustion. It is supposed that this release is provided by the presence of the Ca-ATPase protein.  相似文献   

2.
Carnosine (beta-alanyl-L-histidine), which is present in millimolar concentrations in skeletal muscles, induces Ca2+ release from the heavy fraction of rabbit skeletal muscle sarcoplasmic reticulum by activation ruthenium red-sensitive Ca-release channels. The effect of carnosine is dose-dependent, which indicates the presence of saturable carnosine-binding sites in the Ca-release channel molecule. The half-maximal Ca2+ release is observed in the presence of 8.7 mM carnosine. At the same time, carnosine addition to the medium increases the affinity of sarcoplasmic reticulum Ca-channels for the Ca-release activators, caffeine and adenine nucleotides. It is concluded that carnosine is an endogenous regulator of skeletal muscle sarcoplasmic reticulum Ca-channels which modulates the affinity of these channels for different ligands.  相似文献   

3.
The study of Ca2+- and caffeine-induced Ca2+ release from heavy sarcoplasmic reticulum vesicles under the different conditions suggests that Ca2+ and caffeine can interact with the common receptor of the Ca-release channels. The reticulum membranes were solubilized using nonionic detergent polyoxyethylene 9-lauryl ether, and affinity chromatography on reactive red 120-agarose was carried out. The 170 kD Ca-binding protein which is eluted by caffeine is the most probable candidate for the caffeine receptor of the Ca-channels.  相似文献   

4.
The same level of passively loaded Ca2+ was observed both in the heavy (enriched in terminal cisternae) and light (enriched in longitudinal reticulum) sarcoplasmic reticulum (SR) fractions. The level of passively loaded Ca2+ of the both SR fractions decreased in the presence of 150 mM K+. However the rate and extent of Ca2+ release was greater from heavy SR fraction. The rate of Ca2+ release under conditions of antiport of K+, Na+, choline+ and gluconate-, Cl-, SCH- increased proportion with their permeability through the SR membrane. The initial rate of Ca2+ release also became higher under equal concentration of monovalent cation chloride both inside and outside the SR vesicles. Apparently, in this case Ca2+ release occurs through Ca-channels which are open at a membrane potential.  相似文献   

5.
Rabbit skeletal muscle sarcoplasmic reticulum was fractionated into a "Ca2+-release" and "control" fraction by differential and sucrose gradient centrifugation. External Ca2+ (2-20 microM) caused the release of 40 nmol of 45Ca2+/mg of protein/s from Ca2+-release vesicles passively loaded at pH 6.8 with an internal half-saturation Ca2+ concentration of 10-20 mM. Ca2+-induced Ca2+ release had an approximate pK value of 6.6 and was half-maximally inhibited at an external Ca2+ concentration of 2 X 10(-4) M and Mg2+ concentration of 7 X 10(-5) M. 45Ca2+ efflux from control vesicles was slightly inhibited at external Ca2+ concentrations that stimulated the rapid release of Ca2+ from Ca2+-release vesicles. Adenine, adenosine, and derived nucleotides caused stimulation of Ca2+-induced Ca2+ release in media containing a "physiological" free Mg2+ concentration of 0.6 mM. At a concentration of 1 mM, the order of effectiveness was AMP-PCP greater than cAMP approximately AMP approximately ADP greater than adenine greater than adenosine. Other nucleoside triphosphates and caffeine were minimally effective in increasing 45Ca2+ efflux from passively loaded Ca2+-release vesicles. La3+, ruthenium red, and procaine inhibited Ca2+-induced Ca2+ release. Ca2+ flux studies with actively loaded vesicles also indicated that a subpopulation of sarcoplasmic reticulum vesicles contains a Ca2+ permeation system that is activated by adenine nucleotides.  相似文献   

6.
We have studied Ca transport and the Ca-activated Mg-ATPase in plasma membrane vesicles prepared from normal human lymphocytes. Membrane vesicles that were exposed to oxalate as a Ca-trapping agent accumulated Ca in the presence of Mg2+ and ATP. ADP, AMP, GTP, UTP, ITP, TTP, or CTP did not substitute for ATP in energizing uptake. The Vmax for Ca uptake was 2.4 pmol of Ca/micrograms of protein/min, and the Km values for Ca and ATP were 1.0 and 80 microM, respectively. One microM A23187, added initially, completely inhibited net Ca uptake and, if added later, caused the release of Ca accumulated previously. Cyanide, oligomycin, ouabain, or varying Na+ or K+ concentrations had no effect on Ca uptake. A Ca-activated ATPase was present in the same membrane vesicles, which had a Vmax of 25 pmol of Pi/micrograms of protein/min at a free Ca concentration of 4-5 microM. This Ca-ATPase had Km values for Ca and ATP of 0.6 and 90 microM, respectively. These kinetic parameters were similar to those observed for uptake of Ca by the vesicles. The Ca-ATPase activity was insensitive to azide, oligomycin, ouabain, or varying Na+ or K+ concentrations. No Ca-activated hydrolysis of GTP or UTP was observed. Both Ca transport and the Ca-ATPase activity of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid-treated lymphocyte plasma membranes were stimulated 2-fold by a cytoplasmic component (calmodulin) that was purified 500-fold from lymphocyte cytoplasm. Thus, human lymphocyte plasma membranes have both a Ca transport activity and a Ca-stimulated ATPase activity with similar substrate affinities and specificities and similar sensitivities to calmodulin.  相似文献   

7.
The tetracaine and cinchocaine in concentration less than 2 mM and 0.5 mM, respectively, stimulate ATP-dependent Ca-loading by enhancing the initial rate of Ca2+-accumulation, do not affect the Ca2+-binding and Ca-ATPase activity of sarcoplasmic reticulum vesicles. These data suggest blocking of Ca2+-efflux from vesicles which occurs during Ca-accumulation. Higher concentrations of the same compounds (above 2 mM and 0.5 mM for tetracaine and cinchocaine, respectively) caused inhibition of the Ca-ATPase activity and decreased the ability of SR vesicles to retain Ca2+, probably, due to their nonspecific lipophilic action.  相似文献   

8.
The Ca-ATPase activity of membranous scallop sarcoplasmic reticulum was found to be unstable when the Ca(2+)-binding sites on the Ca-ATPase were unoccupied. The decay in activity could be slowed or halted by inclusion in the preincubation medium of Na+, K+, nucleotides, ethylene glycol, or high concentrations of choline chloride. Stabilization of the Ca(2+)-free Ca-ATPase by Na+ and K+ showed a markedly different concentration dependence to that seen with activation of the Ca(2+)-activated ATPase activity by the two ions. Examination in the electron microscope of scallop membranes negatively stained in the presence of EGTA under conditions where the enzyme had been stabilized against lack of Ca2+ always showed vesicles containing dimer ribbon structures, whereas unstabilized membranes did not show dimer ribbons. There was an association between the effectiveness of a medium in stabilizing the enzyme in the presence of EGTA and the extent and quality of the dimer arrays seen in the microscope. Comparison of the range of Ca2+ concentration over which the Ca(2+)-binding sites on the scallop Ca-ATPase titrated with the range over which the dimer ribbon structural state was lost indicated that the Ca(2+)-binding sites on the Ca-ATPase must be empty for dimer ribbon formation to occur. Previous studies (Franzini-Armstrong, C., Ferguson, D. G., Castellani, L., and Kenney, L. J. (1987) Ann. N. Y. Acad. Sci. 483, 44-56) have found that the Ca-ATPase molecules in scallop adductor muscle freeze-fractured after fixation under relaxing conditions are arranged in dimer ribbons. Thus, the association of stabilization of the Ca(2+)-free Ca-ATPase with the presence of dimer ribbons implies that one function of the dimer state may be to stabilize the scallop enzyme in situ, when the Ca2+ concentration in the sarcoplasm is low and the muscle is relaxed.  相似文献   

9.
Previously, we showed that incubation of the scallop sarcoplasmic reticulum (SR) with EGTA at above 37 degrees C resulted in the uncoupling of ATP hydrolysis with Ca2+ transport [Nagata et al. (1996) J. Biochem. 119, 1100-1105]. We have extended this study by comparing the kinetic behavior of Ca2+ release and binding to the uncoupled SR with that of intact scallop or rabbit SR. The change in the Ca2+ concentration in the reaction medium, as determined as the absorption of APIII, was followed using a stopped flow system. Intact scallop SR was preincubated with Ca2+ in the presence of a Ca2+ ionophore, A23187, and then ATP was added to initiate the reaction. The Ca2+ level in the medium increased to the maximum level in several seconds, and then slowly decreased to the initial low level. The rising and subsequent slow decay phases could be related to the dissociation and reassociation of Ca2+ with the Ca-ATPase, respectively. When uncoupled scallop SR vesicles were preincubated with CaCl2 in the absence of A23187 and then the reaction was initiated by the addition of ATP, a remarkable amount of Ca2+ was released from the SR vesicles into the cytosolic solution, whereas, with intact scallop or rabbit SR, only a sharp decrease in the Ca2+ level was observed. Based on these findings, we concluded that the heat treatment of scallop SR in EGTA may alter the conformation of the Ca-ATPase, thereby causing Ca2+ to be released from the enzyme, during the catalytic cycle, at the cytoplasmic surface, but not at the lumenal surface of SR vesicles.  相似文献   

10.
H+ and Ca2+ concentration changes in the reaction medium following MgATP addition at pH 6.0 were determined with the partially purified Ca-ATPase from sarcoplasmic reticulum vesicles in the presence of 25-50 microM CaCl2 and 5 mM MgCl2 at 4 degrees C. Previously, we showed a sequential occurrence of H+ binding and H+ dissociation in the Ca-ATPase during ATP hydrolysis and further suggested that the H+ binding takes place inside the vesicles (Yamaguchi, M., and Kanazawa, T. (1984) J. Biol. Chem. 259, 9526-9531). The present results demonstrate that the H+ binding occurred coincidently with Ca2+ dissociation from the enzyme upon conversion of the phosphoenzyme (EP) intermediate from the ADP-sensitive form to the ADP-insensitive form in the catalytic cycle of ATP hydrolysis. As KCl decreased in the medium, the extent of the H+ binding increased almost proportionately with the extent of either the Ca2+ dissociation or the accumulation of ADP-insensitive EP. Both the H+ binding and the Ca2+ dissociation were prevented by a modification of the specific SH group of the enzyme essential for the conversion of ADP-sensitive EP to ADP-insensitive EP. In the late stage of the reaction, H+ dissociation from the enzyme occurred coincidently with Ca2+ binding to the dephosphoenzyme which was formed by EP decomposition. These results are consistent with the possibility that the H+ ejection during the Ca2+ uptake with the intact vesicles previously shown by several investigators takes place through a Ca2+/H+ exchange directly mediated by the membrane-bound Ca-ATPase.  相似文献   

11.
L G Mészáros  J Bak 《Biochemistry》1992,31(4):1195-1200
The kinetics of Ca2+ transport mediated by the sarcoplasmic reticulum (SR) Ca-ATPase were investigated by rapid kinetic techniques that either measure the disappearance of Ca2+ from the medium [stopped-flow photometry of Ca2+ indicators or rapid filtration (method 1)] or directly detect the changes in the accessibility of Ca2+ to the exterior of the membrane, i.e., occlusion of Ca2+ within the Ca pump and Ca2+ transport into the lumen of SR vesicles [EGTA quench (method 2)]. SR vesicles were preincubated in micromolar Ca2+ to form the E.2Cacyt intermediate of the Ca-ATPase, and then Ca2+ transport was initiated by addition of ATP. It was found that Ca2+ uptake measured by method 1 began with no lag phase, in spite of the prediction of kinetic models of the Ca-ATPase. Instead, the time course of Ca2+ uptake was found to have two components: a fast and a slow phase, similar to that obtained using method 2, although the rate constant of the fast phase determined by method 1 was considerably lower than that measured by method 2. The fast phase of Ca2+ uptake measured by method 1 was not influenced by either Ca2+ ionophore or detergent treatment, whereas the slow phase was diminished.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A membrane fraction isolated from lactating murine mammary tissue and enriched for the Golgi membrane marker enzyme galactosyltransferase exhibited Ca2+-stimulated ATPase activity (Ca-ATPase) in 20 microM-free Mg2+ and 10 microM-MgATP, with an apparent Km for Ca2+ of 0.8 microM. Exogenous calmodulin did not enhance Ca2+ stimulation, nor could Ca-ATPase activities be detected in millimolar total Mg2+ and ATP. When assayed with micromolar Mg2+ and MgATP the Ca-ATPases of skeletal-muscle sarcoplasmic reticulum and of calmodulin-enriched red blood cell plasma membranes were half-maximally activated by 0.1 microM- and 0.6 microM-Ca2+ respectively. All three Ca-ATPases were inhibited by similar micromolar concentrations of trifluoperazine, but the Golgi activity was unaffected by quercetin in concentrations which completely inhibited both the sarcoplasmic-reticulum and red-blood-cell enzymes. The results are consistent with the hypothesis that the high-affinity Ca-ATPase is responsible for the ATP-dependent Ca2+ transport exhibited by Golgi-enriched vesicles derived from lactating mammary gland [Neville, Selker, Semple & Watters (1981) J. Membr. Biol. 61, 97-105; West (1981) Biochim. Biophys. Acta 673, 374-386].  相似文献   

13.
Heavy metal ions have been shown to induce Ca2+ release from skeletal sarcoplasmic reticulum (SR) by binding to free sulfhydryl groups on a Ca2+ channel protein and are now examined in cardiac SR. Ag+ and Hg2+ (at 10-25 microM) induced Ca2+ release from isolated canine cardiac SR vesicles whereas Ni2+, Cd2+, and Cu2+ had no effect at up to 200 microM. Ag(+)-induced Ca2+ release was measured in the presence of modulators of SR Ca2+ release was compared to Ca2(+)-induced Ca2+ release and was found to have the following characteristics. (i) Ag(+)-induced Ca2+ release was dependent on free [Mg2+], such that rates of efflux from actively loaded SR vesicles increased by 40% in 0.2 to 1.0 mM Mg2+ and decreased by 50% from 1.0 to 10.0 mM Mg2+. (ii) Ruthenium red (2-20 microM) and tetracaine (0.2-1.0 mM), known inhibitors of SR Ca2+ release, inhibited Ag(+)-induced Ca2+ release. (iii) Adenine nucleotides such as cAMP (0.25-2.0 mM) enhanced Ca2(+)-induced Ca2+ release, and stimulated Ag(+)-induced Ca2+ release. (iv) Low Ag+ to SR protein ratios (5-50 nmol Ag+/mg protein) stimulated Ca2(+)-dependent ATPase activity in Triton X-100-uncoupled SR vesicles. (v) At higher ratios of Ag+ to SR proteins (50-250 nmol Ag+/mg protein), the rate of Ca2+ efflux declined and Ca2(+)-dependent ATPase activity decreased gradually, up to a maximum of 50% inhibition. (vi) Ag+ stimulated Ca2+ efflux from passively loaded SR vesicles (i.e., in the absence of ATP and functional Ca2+ pumps), indicating a site of action distinct from the SR Ca2+ pump. Thus, at low Ag+ to SR protein ratios, Ag+ is very selective for the Ca2+ release channel. At higher ratios, this selectivity declines as Ag+ also inhibits the activity of Ca2+,Mg2(+)-ATPase pumps. Ag+ most likely binds to one or more sulfhydryl sites "on" or "adjacent" to the physiological Ca2+ release channel in cardiac SR to induce Ca2+ release.  相似文献   

14.
Three verdazyl radicals were studied for their effect on calcium accumulation and outflux (passive and Ca- or caffeine-induced) and conformational state of the Ca-ATPase. All three compounds differently affected the ATP-dependent Ca-accumulation. Their effect on the Ca-release from the sarcoplasmic reticulum vesicles could not be explained by their influence on the Ca-accumulation system. The Ca2+ amount liberated by the calcium or caffeine addition was equal in both cases but was modified differently by the used verdazyl compounds. The data obtained suggest that Ca-induced and caffeine-induced calcium release is realized by different mechanisms.  相似文献   

15.
A radioisotope flux-rapid-quench-Millipore filtration method is described for determining the effects of Ca2+, adenine nucleotides, and Mg2+ on the Ca2+ release behaviour of "heavy" sarcoplasmic reticulum (SR) vesicles. Rapid 45Ca2+ efflux from passively loaded vesicles was blocked by the addition of Mg2+ and ruthenium red. At pH 7 and 10(-9) M Ca2+, vesicles released 45Ca2+ with a low rate (k = 0.1 s-1). An increase in external Ca2+ concentration to 4 microM or the addition of 5 mM ATP or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) (AMP-PCP) resulted in intermediate 45Ca2+ release rates. The maximal release rate was observed in media containing 4 microM Ca2+ and 5 mM AMP-PCP and had a first-order rate constant of 30-100 s-1. Mg2+ partially inhibited Ca2+- and nucleotide-induced 45Ca2+ efflux. In the absence of AMP-PCP, 45Ca2+ release was fully inhibited at 5 mM Mg2+ or 5 mM Ca2+. The composition of the release media was systematically varied, and the flux data were expressed in the form of Hill equations. The apparent n values of activation of Ca2+ release by ATP and AMP-PCP were 1.6-1.9. The Hill coefficient of Ca2+ activation (n = 0.8-2.1) was dependent on nucleotide and Mg2+ concentrations, whereas the one of Mg2+ inhibition (n = 1.1-1.6) varied with external Ca2+ concentration. These results suggest that heavy SR vesicles contain a "Ca2+ release channel" which is capable of conducting Ca2+ at rates comparable with those found in intact muscle. Ca2+, AMP-PCP (ATP), and Mg2+ appear to act at noninteracting or interacting sites of the channel.  相似文献   

16.
We have developed a rapid filtration technique for the measurement of Ca2+ release from isolated sarcoplasmic reticulum vesicles. Using this technique, we have studied the Ca2+-induced Ca2+ release of sarcoplasmic reticulum vesicles from rabbit skeletal muscle passively loaded with 5 mM Ca2+. The effect of known effectors (adenine nucleotides and caffeine) and inhibitors (Mg2+ and ruthenium red) of this release were investigated. In a medium composed of 100 mM KCl buffered at pH 6.8 with 20 mM K/3-(N-morpholino)propanesulfonic acid the Ca2+ release rate was maximal (500 nmol of Ca2+ released.(mg of protein)-1.s-1) at 1 micron external Ca2+ and 5 mM ATP. We also observed a rapid Ca2+ release induced by micromolar Ag+ in the presence of ATP (at 1 nM Ca2+). The Ag+-induced Ca2+ release was totally inhibited by 5 micron ruthenium red. We have also investigated the effect of monovalent ions on the Ca2+ release elicited by Ca2+ or Ag+. We show that the Ca2+ release rate: 1) was dependent upon the presence of K+ or Na+ in the release medium and 2) was influenced by a K+ gradient created across the sarcoplasmic reticulum membrane. These results directly support the idea of the involvement of an influx of K+ (through K+ channels) during the Ca2+ release and allow to reconsider a possible influence of the membrane potential of the sarcoplasmic reticulum on the Ca2+ release.  相似文献   

17.
The anthraquinones, doxorubicin, mitoxantrone, daunorubicin and rubidazone are shown to be potent stimulators of Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles and to trigger transient contractions in chemically skinned psoas muscle fibers. These effects of anthraquinones are the direct consequence of their specific interaction with the [3H] ryanodine receptor complex, which constitutes the Ca2+ release channel from the triadic junction. In the presence of adenine nucleotides and physiological Mg2+ concentrations (approximately 1.0 mM), channel activation by doxorubicin and daunorubicin exhibits a sharp dependence on submicromolar Ca2+ which is accompanied by a selective, dose-dependent increase in the apparent affinity of the ryanodine binding sites for Ca2+, in a manner similar to that previously reported with caffeine. Unlike caffeine, however, anthraquinones increase [3H]ryanodine receptor occupancy to the level observed in the presence of adenine nucleotides. A strong interaction between the anthraquinone and the caffeine binding sites on the Ca2+ release channel is also observed when monitoring Ca2+ fluxes across the SR. Millimolar caffeine both inhibits anthraquinone-stimulated Ca2+ release, and reduces anthraquinone-stimulated [3H]ryanodine receptor occupancy, without changing the effective binding constant of the anthraquinone for its binding site. The degree of cooperativity for daunorubicin activation of Ca2+ release from SR also increases in the presence of caffeine. These results demonstrate that the mechanism by which anthraquinones stimulate Ca2+ release is caused by a direct interaction with the [3H]ryanodine receptor complex, and by sensitization of the Ca2+ activator site for Ca2+.  相似文献   

18.
Reactive disulfide compounds (RDSs) with a pyridyl ring adjacent to the S-S bond such as 2,2'-dithiodipyridine (2,2'-DTDP), 4,4'-dithiodipyridine, and N-succinimidyl 3(2-pyridyldithio)propionate (SPDP) trigger Ca2+ release from sarcoplasmic reticulum (SR) vesicles. They are known to specifically oxidize free SH sites via a thiol-disulfide exchange reaction with the stoichiometric production of thiopyridone. Thus, the formation of a mixed S-S bond between an accessible SH site on an SR protein and a RDS causes large increases in SR Ca2+ permeability. Reducing agents, glutathione (GSH) or dithiothreitol reverse the effect of RDSs and permit rapid re-uptake of Ca2+ by the Ca2+, Mg2+-ATPase. The RDSs, 2,2'-DTDP, 4,4'-dithiodipyridine and SPDP displaced [3H]ryanodine binding to the Ca2+-receptor complex at IC50 values of 7.5 +/- 0.2, 1.5 +/- 0.1, and 15.4 +/- 0.1 microM, respectively. RDSs did not alter the rapid initial phase of Ca2+ uptake by the pump, stimulated ATPase activity, and induced release from passively loaded vesicles with nonactivated pumps; thus they act at a Ca2+ release channel and not at the Ca2+, Mg2+-ATPase. Efflux rates increased in 0.25-1.0 mM [Mg2+]free then decreased in 2-5 mM [Mg2+]free. Adenine nucleotides inhibited the oxidation of SHs on SR protein by RDSs and thus reduced Ca2+ efflux rates. However, once RDSs oxidized these SH sites and opened the Ca2+ release pathway, subsequent additions of nucleotides stimulated Ca2+ efflux. In skinned fibers, 2,2'-dithiodipyridine elicited rapid twitches which were blocked by ruthenium red. These results indicate that RDSs trigger Ca2+ release from SR by oxidizing a critical SH group, and thus provide a method to covalently label the protein(s) involved in causing these changes in Ca2+ permeability.  相似文献   

19.
A Owen  A Sener  W J Malaisse 《Enzyme》1983,29(1):2-14
Pancreatic islets can be viewed as a fuel-sensor organ. The amount of ATP used by the islet cells for the maintenance of adequate Ca2+ gradients across membranes is not known. An indirect approach to this issue consists in the measurement of Ca-ATPase activity. The kinetics of Ca-ATPase in islet homogenates yielded a Km for ATP close to 0.1 mM and two Km values for Ca2+ close to 0.13 and 4-6 microM, respectively. Within limits, the Ca-ATPase appeared as a distinct entity from Mg-ATPase. Several divalent cations, including Mg2+, inhibited the Ca-ATPase activity. Calmodulin also inhibited, significantly albeit modestly Ca-ATPase. The activity of the enzyme was increased at high pH or in the presence of bicarbonate. The reaction velocity at close-to-physiological concentrations of ATP, Ca2+ and H+ suggests that the consumption of ATP by the Ca-ATPase may account for a major fraction of the overall rate of ATP breakdown in intact islets.  相似文献   

20.
Ca2+-induced Ca2+ release and pH-induced Ca2+ release activities were identified in sarcoplasmic-reticulum (SR) vesicles isolated from adult- and fetal-sheep hearts. Ca2+-induced Ca2+ release and pH-induced Ca2+ release appear to proceed via the same channels, since both phenomena are similarly inhibited by Ruthenium Red. Ca2+ release from fetal SR vesicles is inhibited by higher concentrations of Ruthenium Red than is that from adult membranes. Both fetal and adult SR vesicles bind ryanodine. Fetal SR shows higher ryanodine-binding capacity than adult SR vesicles. Scatchard analysis of ryanodine binding revealed only one high-affinity binding site (Kd 6.7 nM) in fetal SR vesicles compared with two distinct binding sites (Kd 6.6 and 81.5 nM) in the adult SR vesicles. SR vesicles isolated from fetal and adult hearts were separated on discontinuous sucrose gradients into light (free) and heavy (junctional) SR vesicles. Heavy SR vesicles isolated from adult hearts exhibited most of the Ca2+ release activities. In contrast, Ca2+-induced Ca2+ release, pH-induced Ca2+ release and ryanodine receptors were detected in both light and heavy fetal SR. These results suggest that fetal SR may not be morphologically and functionally as well differentiated as that of adult cardiac muscle and that it may contain a greater number of Ca2+-release channels than that present in adult SR membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号