首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Signal sequence receptor alpha (SSR alpha) and calnexin are major calcium-binding proteins of the endoplasmic reticulum (ER) which are implicated in chaperone functions. They were identified as major membrane substrates after in vitro phosphorylation of ER membranes with [gamma-32P]GTP (Wada, I., Rindress, D., Cameron, P. H., Ou, W. J., Doherty, J.-J., II, Louvard, D., Bell, A. W., Dignard, D., Thomas, D. Y., and Bergeron, J. J. M. (1991) J. Biol. Chem. 266, 19599-19610). Using purified SSR alpha and associated calnexin as substrates, we have attempted to identify the kinase(s) responsible for their phosphorylation. A salt extract from canine pancreatic ER membranes and cytosol possessed SSR alpha kinase activity which showed identical chromatographic behavior through phosphocellulose, DEAE-Sepharose, and hydroxylapatite purification protocols. Final purification was effected from the cytosol with three polypeptides of 38, 36, and 28 kDa detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On the basis of primary sequence analysis of the three subunits of the purified kinase and the reconstitution of phosphorylation of SSR alpha and associated calnexin in heat-inactivated ER membranes by the addition of the purified kinase we conclude that the ER-associated kinase responsible for the GTP phosphorylation of SSR alpha and associated calnexin is casein kinase II.  相似文献   

2.
Before secretion, newly synthesized thyroglobulin (Tg) folds via a series of intermediates: disulfide-linked aggregates and unfolded monomers-->folded monomers-->dimers. Immediately after synthesis, very little Tg associated with calnexin (a membrane-bound molecular chaperone in the ER), while a larger fraction bound BiP (a lumenal ER chaperone); dissociation from these chaperones showed superficially similar kinetics. Calnexin might bind selectively to carbohydrates within glycoproteins, or to hydrophobic surfaces of secretory proteins while they form proper disulfide bonds (Wada, I., W.-J. Ou, M.-C. Liu, and G. Scheele, J. Biol. Chem. 1994. 269:7464-7472). Because Tg has multiple disulfides, as well as glycans, we tested a brief exposure of live thyrocytes to dithiothreitol, which resulted in quantitative aggregation of nascent Tg, as analyzed by SDS-PAGE of cells lysed without further reduction. Cells lysed in the presence of dithiothreitol under non-denaturing conditions caused Tg aggregates to run as reduced monomers. For cells lysed either way, after in vivo reduction, Tg coprecipitated with calnexin. After washout of dithiothreitol, nascent Tg aggregates dissolved intracellularly and were secreted ultimately. 1 h after washout, > or = 92% of labeled Tg was found to dissociate from calnexin, while the fraction of labeled Tg bound to BiP rose from 0 to approximately 40%, demonstrating a "precursor-product" relationship. Whereas intralumenal reduction was essential for efficient Tg coprecipitation with calnexin, Tg glycosylation was not required. These data are among the first to demonstrate sequential chaperone function involved in conformational maturation of nascent secretory proteins within the ER.  相似文献   

3.
Heterodimers of MHC class I glycoprotein and beta(2)-microglobulin (beta(2)m) bind short peptides in the endoplasmic reticulum (ER). Before peptide binding these molecules form part of a multisubunit loading complex that also contains the two subunits of the TAP, the transmembrane glycoprotein tapasin, the soluble chaperone calreticulin, and the thiol oxidoreductase ERp57. We have investigated the assembly of the loading complex and provide evidence that after TAP and tapasin associate with each other, the transmembrane chaperone calnexin and ERp57 bind to the TAP-tapasin complex to generate an intermediate. These interactions are independent of the N:-linked glycan of tapasin, but require its transmembrane and/or cytoplasmic domain. This intermediate complex binds MHC class I-beta(2)m dimers, an event accompanied by the loss of calnexin and the acquisition of calreticulin, generating the MHC class I loading complex. Peptide binding then induces the dissociation of MHC class I-beta(2)m dimers, which can be transported to the cell surface.  相似文献   

4.
The assembly of major histocompatibility complex (MHC) class I molecules is one of the more widely studied examples of protein folding in the endoplasmic reticulum (ER). It is also one of the most unusual cases of glycoprotein quality control involving the thiol oxidoreductase ERp57 and the lectin-like chaperones calnexin and calreticulin. The multistep assembly of MHC class I heavy chain with beta(2)-microglobulin and peptide is facilitated by these ER-resident proteins and further tailored by the involvement of a peptide transporter, aminopeptidases, and the chaperone-like molecule tapasin. Here we summarize recent progress in understanding the roles of these general and class I-specific ER proteins in facilitating the optimal assembly of MHC class I molecules with high affinity peptides for antigen presentation.  相似文献   

5.
Calnexin is a membrane-bound protein of the ER in animal cells (Wada et al., 1991). It shows considerable similarity to the major calcium-sequestering protein of the ER lumen, calreticulin, with two calcium-binding regions--a high-affinity, low-capacity region in the ER lumen and a low-affinity, high-capacity region in the cytoplasm. The protein is postulated to act as a calcium-regulated chaperone during protein maturation (Ou et al., 1993). We have isolated a genomic sequence showing significant homology to the animal gene over the predicted coding sequence (Table I). A partial cDNA from Zea mays was isolated from an expression library made from 6-d coleoptiles (Clontech, Palo Alto, CA). The library was screened using a monoclonal antibody raised against a small number of microsomal proteins resulting from a partial purification of plasma membrane Ca2+ ATPase (Briars et al., 1988). The partial cDNA showed sequence homology to the calcium-binding region common to calreticulin and calnexin. The fragment was used to screen a genomic library constructed from Arabidopsis thaliana (cv Larasbonerecta), and a 15-kb fragment was isolated and subcloned and the relevant subfragments were sequenced. The coding region contains five introns, two in the N-terminal region and three in the C-terminal region. The predicted amino acid sequence shows a high level of homology with the animal calnexin, although the terminal highly acidic calcium-binding region is shorter. A cDNA for a putative homolog of calnexin was isolated from A. thaliana (cv Columbia) by Huang et al.(1993); our coding sequence shows 85% identity and 92% similarity determined by FASTA (Wisconsin Genetics Computer Group package); however, the differences are greater than would be expected between cultivars of the same species. A Southern blot probed with DNA from the central calcium-binding region shows multiple bands. This, combined with the sequence heterogeneity, suggests that calnexin belongs to a family of related genes.  相似文献   

6.
Calnexin is a membrane protein of the endoplasmic reticulum (ER) that functions as a molecular chaperone and as a component of the ER quality control machinery. Calreticulin, a soluble analog of calnexin, is thought to possess similar functions, but these have not been directly demonstrated in vivo. Both proteins contain a lectin site that directs their association with newly synthesized glycoproteins. Although many glycoproteins bind to both calnexin and calreticulin, there are differences in the spectrum of glycoproteins that each binds. Using a Drosophila expression system and the mouse class I histocompatibility molecule as a model glycoprotein, we found that calreticulin does possess apparent chaperone and quality control functions, enhancing class I folding and subunit assembly, stabilizing subunits, and impeding export of assembly intermediates from the ER. Indeed, the functions of calnexin and calreticulin were largely interchangeable. We also determined that a soluble form of calnexin (residues 1-387) can functionally replace its membrane-bound counterpart. However, when calnexin was expressed as a soluble protein in L cells, the pattern of associated glycoproteins changed to resemble that of calreticulin. Conversely, membrane-anchored calreticulin bound to a similar set of glycoproteins as calnexin. Therefore, the different topological environments of calnexin and calreticulin are important in determining their distinct substrate specificities.  相似文献   

7.
Assembly of HLA class I-peptide complexes is assisted by multiple proteins that associate with HLA molecules in loading complexes. These include the housekeeping chaperones calnexin and calreticulin and two essential proteins, the transporters associated with antigen processing (TAP) for peptide supply, and the protein tapasin which is thought to act as a specialized chaperone. We dissected functional effects of processing cofactors by co-expressing in insect cells various combinations of the human proteins HLA-A2, HLA-B27, beta(2)-microglobulin, TAP, calnexin, calreticulin, and tapasin. Stability at 37 degrees C and surface expression of class I dimers correlated closely in baculovirus-infected Sf9 cells, suggesting that these cells retain empty dimers in the endoplasmic reticulum. Both HLA molecules form substantial quantities of stable complexes with insect cell-produced peptide pools. These pools are TAP-selected cytosolic peptides for HLA-B27 but endoplasmic reticulum-derived, i.e. TAP-independent peptides for HLA-A2. This discrepancy may be due to peptide selection by human TAP which is much better adapted to the HLA-B27 than to the HLA-A2 ligand preferences. HLA class I assembly with peptides from TAP-dependent and -independent pools was enhanced strongly by tapasin. Thus, tapasin acts as a chaperone and/or peptide editor that facilitates assembly of peptides with HLA class I molecules independently of mediating their interaction with TAP and/or retention in the endoplasmic reticulum.  相似文献   

8.
Calnexin is a membrane-bound lectin of the endoplasmic reticulum (ER) that binds transiently to newly synthesized glycoproteins. By interacting with oligosaccharides of the form Glc(1)Man(9)GlcNAc(2), calnexin enhances the folding of glycoprotein substrates, retains misfolded variants in the ER, and in some cases participates in their degradation. Calnexin has also been shown to bind polypeptides in vivo that do not possess a glycan of this form and to function in vitro as a molecular chaperone for nonglycosylated proteins. To test the relative importance of the lectin site compared with the polypeptide-binding site, we have generated six calnexin mutants defective in oligosaccharide binding using site-directed mutagenesis. Expressed as glutathione S-transferase fusions, these mutants were still capable of binding ERp57, a thiol oxidoreductase, and preventing the aggregation of a nonglycosylated substrate, citrate synthase. They were, however, unable to bind Glc(1) Man(9)GlcNAc(2) oligosaccharide and were compromised in preventing the aggregation of the monoglucosylated substrate jack bean alpha-mannosidase. Two of these mutants were then engineered into full-length calnexin for heterologous expression in Drosophila cells along with the murine class I histocompatibility molecules K(b) and D(b) as model glycoproteins. In this system, lectin site-defective calnexin was able to replace wild type calnexin in forming a complex with K(b) and D(b) heavy chains and preventing their degradation. Thus, at least for class I molecules, the lectin site of calnexin is dispensable for some of its chaperone functions.  相似文献   

9.
Class I molecules of the major histocompatibility complex play a vital role in cellular immunity, reporting on the presence of viral or tumor-associated antigens by binding peptide fragments of these proteins and presenting them to cytotoxic T cells at the cell surface. The folding and assembly of class I molecules is assisted by molecular chaperones and folding catalysts that comprise the general ER quality control system which also monitors the integrity of the process, disposing of misfolded class I molecules through ER associated degradation (ERAD). Interwoven with general ER quality control are class I-specific components such as the peptide transporter TAP and the tapasin-ERp57 chaperone complex that supply peptides and monitor their loading onto class I molecules. This ensures that at the cell surface class I molecules will possess mainly optimal peptides with a long half-life. In this review we discuss these processes as well as a number of strategies that viruses have evolved to subvert normal class I assembly within the ER and thereby evade immune recognition by cytotoxic T cells.  相似文献   

10.
The assembly of newly synthesized MHC class I molecules within the endoplasmic reticulum and their association with the transporter associated with antigen processing (TAP) is a process involving the chaperones calnexin and calreticulin. Using peptide mapping by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to identify a new component, we now introduce a third molecular chaperone, the thiol-dependent reductase ER-60 (ERp57/GRP58/ERp61/HIP-70/Q2), into this process. ER-60 is found in MHC class I heavy chain complexes with calnexin that are generated early during the MHC class I assembly pathway. The thiol reductase activity of ER-60 raises the possibility that ER-60 is involved in the disulfide bond formation within heavy chains. In addition, ER-60 is part of the late assembly complexes consisting of MHC class I, tapasin, TAP, calreticulin and calnexin. In a beta2-microglobulin (beta2m)-negative mouse cell line, S3, ER-60-calnexin-heavy chain complexes are shown to bind to TAP, suggesting that beta2m is not required for the association of MHC class I heavy chains with TAP.  相似文献   

11.
Calnexin, a membrane protein of the endoplasmic reticulum, is generally thought to function as a molecular chaperone, based on indirect or correlative evidence. To examine calnexin''s functions more directly, we reconstituted the assembly of class I histocompatibility molecules in the absence or presence of calnexin in Drosophila melanogaster cells. Calnexin enhanced the assembly of class I heavy chains with beta 2-microglobulin as much as 5-fold. The improved assembly appeared largely due to more efficient folding of heavy chains, as evidenced by increased reactivity with a conformation-sensitive monoclonal antibody and by a reduction in the level of aggregates. Similar findings were obtained in mouse or human cells when the interaction of calnexin with class I heavy chains was prevented by treatment with the oligosaccharide processing inhibitor castanospermine. The ability of calnexin to facilitate castanospermine. The ability of calnexin to facilitate heavy chain folding and to prevent the formation of aggregates provides compelling evidence that calnexin functions as a bona fide molecular chaperone.  相似文献   

12.
Before peptide binding in the endoplasmic reticulum, the class I heavy (H) chain-beta(2)-microglobulin complexes are detected in association with TAP and two chaperones, TPN and CRT. Recent studies have shown that the thiol-dependent reductase, ERp57, is also present in this peptide-loading complex. However, it remains controversial whether the association of ERp57 with MHC class I molecules precedes their combined association with the peptide-loading complex or whether ERp57 only associates with class I molecules in the presence of TPN. Resolution of this controversy could help determine the role of ERp57 in class I folding and/or assembly. To define the mouse class I H chain structures involved in interaction with ERp57, we tested chaperone association of L(d) mutations at residues 134 and 227/229 (previously implicated in TAP association), residues 86/88 (which ablate an N-linked glycan), and residue 101 (which disrupts a disulfide bond). The association of ERp57 with each of these mutant H chains showed a complete concordance with CRT, TAP, and TPN but not with calnexin. Furthermore, ERp57 failed to associate with H chain in TPN-deficient.220 cells. These combined data demonstrate that, during the assembly of the peptide-loading complex, the association of ERp57 with mouse class I is TPN dependent and parallels that of CRT and not calnexin.  相似文献   

13.
To resolve primary (glycosylation-assisted) from secondary (glycosylation-independent) quality control steps in the biosynthesis of HLA (human leukocyte antigen) class I glycoproteins, the unique N-linked glycosylation site of the HLA-Cw1 heavy chain was deleted by site-directed mutagenesis. The non-glycosylated Cw1S88G mutant was characterized by flow cytometry, pulse-chase, co-immunoprecipitation, and in vitro assembly assays with synthetic peptide ligands upon transfection in 721.221 and 721.220 cells. The former provide a full set of primary as well as secondary chaperoning interactions, whereas the latter are unable to perform secondary quality control (e.g. proper class I assembly with peptide antigens) as a result of a functional defect of the HLA-dedicated chaperone tapasin. In both transfectants, Cw1S88G displayed a loss/weakening in its generic chaperoning interaction with calreticulin and/or ERp57 and became redistributed toward calnexin, known to bind the most unfolded class I conformers. Despite this, and quite unexpectedly, a weak interaction with the HLA-dedicated chaperone TAP was selectively retained in 721.221. In addition, the ordered, stepwise acquisition of thermal stability/peptide binding was disrupted, resulting in a heterogeneous ensemble of Cw1S88G conformers with unorthodox and unprecedented peptide assembly features. Because a lack of glycosylation and a lack of tapasin-assisted peptide loading have distinct, complementary, and additive effects, the former is separable from (and upstream of) the latter, e.g. primary quality control is suggested to supervise a crucial, generic folding step preliminary to the acquisition of peptide receptivity.  相似文献   

14.
Members of the CD1 family of membrane glycoproteins can present antigenic lipids to T lymphocytes. Like major histocompatibility complex class I molecules, they form a heterodimeric complex of a heavy chain and beta(2)-microglobulin (beta(2)m) in the endoplasmic reticulum (ER). Binding of lipid antigens, however, takes place in endosomal compartments, similar to class II molecules, and on the plasma membrane. Unlike major histocompatibility complex class I or CD1b molecules, which need beta(2)m to exit the ER, CD1d can be expressed on the cell surface as either a free heavy chain or associated with beta(2)m. These differences led us to investigate early events of CD1d biosynthesis and maturation and the role of ER chaperones in its assembly. Here we show that CD1d associates in the ER with both calnexin and calreticulin and with the thiol oxidoreductase ERp57 in a manner dependent on glucose trimming of its N-linked glycans. Complete disulfide bond formation in the CD1d heavy chain was substantially impaired if the chaperone interactions were blocked by the glucosidase inhibitors castanospermine or N-butyldeoxynojirimycin. The formation of at least one of the disulfide bonds in the CD1d heavy chain is coupled to its glucose trimming-dependent association with ERp57, calnexin, and calreticulin.  相似文献   

15.
Chemical cross-linking and gel permeation chromatography were used to examine early events in the biogenesis of class I histocompatibility molecules. We show that newly synthesized class I heavy chains associate rapidly and quantitatively with an 88-kD protein in three murine tumor cell lines. This protein (p88) does not appear to possess Asn-linked glycans and it is not the abundant ER protein, GRP94. The class I-p88 complex exists transiently (t1/2 = 20-45 min depending on the specific class I heavy chain) and several lines of evidence suggest that p88 dissociates from the complex while still in the ER. Dissociation is not triggered upon binding of beta 2-microglobulin to the heavy chain (t1/2 = 2-5 min). However, the rate of dissociation does correlate with the characteristic rate of ER to Golgi transport for the particular class I molecule studied. Consequently, dissociation of p88 may be rate limiting for ER to Golgi transport. Class I molecules bind antigenic peptides, apparently in the ER, for subsequent presentation to cytotoxic T lymphocytes at the cell surface. p88 could promote peptide binding or it may retain class I molecules in the ER during formation of the ternary complex of heavy chain, beta 2-microglobulin, and peptide.  相似文献   

16.
Swanton E  High S  Woodman P 《The EMBO journal》2003,22(12):2948-2958
The endoplasmic (ER) quality control apparatus ensures that misfolded or unassembled proteins are not deployed within the cell, but are retained in the ER and degraded. A glycoprotein-specific system involving the ER lectins calnexin and calreticulin is well documented, but very little is known about mechanisms that may operate for non-glycosylated proteins. We have used a folding mutant of a non- glycosylated membrane protein, proteolipid protein (PLP), to examine the quality control of this class of polypeptide. We find that calnexin associates with newly synthesized PLP molecules, binding stably to misfolded PLP. Calnexin also binds stably to an isolated transmembrane domain of PLP, suggesting that this chaperone is able to monitor the folding and assembly of domains within the ER membrane. Notably, this glycan-independent interaction with calnexin significantly retards the degradation of misfolded PLP. We propose that calnexin contributes to the quality control of non-glycosylated polytopic membrane proteins by binding to misfolded or unassembled transmembrane domains, and discuss our findings in relation to the role of calnexin in the degradation of misfolded proteins.  相似文献   

17.
Using indirect immunofluorescence we have examined the effects of reagents which inhibit the function of ras-related rab small GTP-binding proteins and heterotrimeric G alpha beta gamma proteins in ER to Golgi transport. Export from the ER was inhibited by an antibody towards rab1B and an NH2-terminal peptide which inhibits ARF function (Balch, W. E., R. A. Kahn, and R. Schwaninger. 1992. J. Biol. Chem. 267:13053-13061), suggesting that both of these small GTP-binding proteins are essential for the transport vesicle formation. Export from the ER was also potently inhibited by mastoparan, a peptide which mimics G protein binding regions of seven transmembrane spanning receptors activating and uncoupling heterotrimeric G proteins from their cognate receptors. Consistent with this result, purified beta gamma subunits inhibited the export of VSV-G from the ER suggesting an initial event in transport vesicle assembly was regulated by a heterotrimeric G protein. In contrast, incubation in the presence of GTP gamma S or AIF(3-5) resulted in the accumulation of transported protein in different populations of punctate pre-Golgi intermediates distributed throughout the cytoplasm of the cell. Finally, a peptide which is believed to antagonize the interaction of rab proteins with putative downstream effector molecules inhibited transport at a later step preceding delivery to the cis Golgi compartment, similar to the site of accumulation of transported protein in the absence of NSF or calcium (Plutner, H., H. W. Davidson, J. Saraste, and W. E. Balch. 1992. J. Cell Biol. 119:1097-1116). These results are consistent with the hypothesis that multiple GTP-binding proteins including a heterotrimeric G protein(s), ARF and rab1 differentially regulate steps in the transport of protein between early compartments of the secretory pathway. The concept that G protein-coupled receptors gate the export of protein from the ER is discussed.  相似文献   

18.
In this review we discuss the influence of chaperones on the general phenomena of folding as well as on the specific folding of an individual protein, MHC class I. MHC class I maturation is a highly sophisticated process in which the folding machinery of the endoplasmic reticulum (ER) is heavily involved. Understanding the MHC class I maturation per se is important since peptides loaded onto MHC class I molecules are the base for antigen presentation generating immune responses against virus, intracellular bacteria as well as tumours. This review discusses the early stages of MHC class I maturation regarding BiP and calnexin association, and differences in MHC class I heavy chain (HC) interaction with calnexin and calreticulin are highlighted. Late stage MHC class I maturation with focus on the dedicated chaperone tapasin is also discussed.  相似文献   

19.
Long QT syndrome type 2 is caused by mutations in the human ether-a-go-go-related gene (hERG). We previously reported that the N470D mutation is retained in the endoplasmic reticulum (ER) but can be rescued to the plasma membrane by hERG channel blocker E-4031. The mechanisms of ER retention and how E-4031 rescues the N470D mutant are poorly understood. In this study, we investigated the interaction of hERG channels with the ER chaperone protein calnexin. Using coimmunoprecipitation, we showed that the immature forms of both wild type hERG and N470D associated with calnexin. The association required N-linked glycosylation of hERG channels. Pulse-chase analysis revealed that N470D had a prolonged association with calnexin compared with wild type hERG and E-4031 shortened the time course of calnexin association with N470D. To test whether the prolonged association of N470D with calnexin is due to defective folding of mutant channels, we studied hERG channel folding using the trypsin digestion method. We found that N470D and the immature form of wild type hERG were more sensitive to trypsin digestion than the mature form of wild type hERG. In the presence of E-4031, N470D became more resistant to trypsin even when its ER-to-Golgi transport was blocked by brefeldin A. These results suggest that defective folding of N470D contributes to its prolonged association with calnexin and ER retention and that E-4031 may restore proper folding of the N470D channel leading to its cell surface expression.  相似文献   

20.
The calcium-binding site of clathrin light chains   总被引:4,自引:0,他引:4  
Clathrin light chains are calcium-binding proteins (Mooibroek, M. J., Michiel, D. F., and Wang, J. H. (1987) J. Biol. Chem. 262, 25-28) and clathrin assembly can be modulated by calcium in vitro. Thus, intracellular calcium may play a regulatory role in the function of clathrin-coated vesicles. The structural basis for calcium's influence on clathrin-mediated processes has been defined using recombinant deletion mutants and isolated fragments of the light chains. A single calcium-binding site, formed by residues 85-96, is present in both mammalian light chains (LCa and LCb) and in the single yeast light chain. This sequence has structural similarity to the calcium-binding EF-hand loops of calmodulin and related proteins. In mammalian light chains, the calcium-binding sequence is flanked by domains that regulate clathrin assembly and disassembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号