首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinitis pigmentosa is a genetically heterogeneous form of retinal degeneration, which has X-linked, autosomal recessive and autosomal dominant forms. The disease genes in families with autosomal dominant retinitis pigmentosa (adRP) have been linked to six loci, on 3q, 6p, 7p, 7q, 8q and 19q. In a large American family with late-onset adRP, microsatellite markers were used to test for linkage to the loci on 3q, 6p, 7p, 7q and 8q. Linkage was found to 7q using the marker D7S480. Additional microsatellite markers from 7q were then tested. In total, five markers, D7S480, D7S514, D7S633, D7S650 and D7S677, show statistically significant evidence for link-age in this family, with a maximum two-point lod score of 5.3 at 0% recombination from D7S514. These results confirm an earlier report of linkage to an adRP locus (RP10) in an unrelated family of Spanish origin and indicate that RP10 may be a significant gene for inherited retinal degeneration. In addition, we used recently reported microsatellite markers from 7q to refine the linkage map of the RP10 locus.  相似文献   

2.
Congenital cataract is a clinically and genetically highly heterogeneous eye disorder, with autosomal dominant inheritance being most common. We investigated a large seven-generation family with 74 individuals affected by autosomal dominant congenital cataract (ADCC). The phenotype in this family can be described as "central pouchlike" cataract with sutural opacities, and it differs from the other mapped cataracts. We performed linkage analysis with microsatellite markers in this family and excluded the known candidate genes. A genomewide search revealed linkage to markers on chromosome 15, with a maximum two-point LOD score of 5.98 at straight theta=0 with marker D15S117. Multipoint analysis also gave a maximum LOD score of 5.98 at D15S117. Multipoint and haplotype analysis narrowed the cataract locus to a 10-cM region between markers D15S209 and D15S1036, closely linked to marker D15S117 in q21-q22 region of chromosome 15. This is the first report of a gene for a clinically new type of ADCC at 15q21-22 locus.  相似文献   

3.
Autosomal dominant renal Fanconi syndrome is a genetic model for the study of proximal renal tubular transport pathology. We were able to map the locus for this disease to human chromosome 15q15.3 by genotyping a central Wisconsin pedigree with 10 affected individuals. After a whole-genome scan with highly polymorphic simple sequence repeat markers, a maximum LOD score of 3.01 was calculated for marker D15S659 on chromosome 15q15.3. Linkage and haplotype analysis for an additional 24 markers flanking D15S659 narrowed the interval to approximately 3 cM, with the two highest single-point LOD scores observed being 4.44 and 4.68 (for D15S182 and D15S537, respectively). Subsequently, a complete bacterial artificial chromosome contig was constructed, from the High Throughput Genomic Sequence Database, for the region bounded by D15S182 and D15S143. The identification of the gene and gene product altered in autosomal dominant renal Fanconi syndrome will allow the study of the physiology of proximal renal tubular transport.  相似文献   

4.
Mutation in the PROM1 gene previously has been identified in one family with retinal degeneration for which neither ERG recordings nor detailed information about visual impairment is available. A large family with multiple individuals affected by retinal degeneration was ascertained in the Punjab province of Pakistan. The visual acuity of all affected patients in the family was severely compromised beginning in early childhood. The retinal disease in this family is a severe form of retinitis pigmentosa (RP) accompanied by macular degeneration. Fundus changes advanced with age. Choriocapillaris atrophy and posterior RPE atrophy were obvious allowing visualization of the large choroidal vessels in patients over 40 years of age. Rod and cone responses on ERG recordings were extinguished in patient’s teens. A genome-wide scan mapped the disease to a 34.7 cM region of chromosome 4p14–p16 between D4S1599 and D4S405. A maximum lod score of 3.96 with D4S403 and D4S391 is seen at θ = 0. Sequence analysis of PROM1 located in the linkage interval identified a c.1726C>T homozygous transition in exon 15: resulting in p.Gln576X in the translated protein. This mutation is found in a homozygous state in all six affected individuals and was heterozygous in five of the six unaffected family members examined. The mutation was not detected in 192 chromosomes of unrelated control individuals of the same ethnicity and from the same region. This delineates the phenotypic characteristics of retinopathy caused by mutations in PROM1. Qingjiong Zhang, Fareeha Zulfiqar, Xueshan Xiao, Sheikh Riazuddin and J. Fielding Hejtmancik contributed equally.  相似文献   

5.
We examined the effects of an interruption of dopamine neurotransmission, by either dopamine receptor blockade or degeneration of dopamine neurons by 6-hydroxydopamine, on the levels of D2 receptor mRNAs. In addition, we evaluated by the polymerase chain reaction (PCR) the relative abundance of the two D2 receptor isoform mRNAs generated by alternative splicing. Daily injections of 4 mg/kg of haloperidol to rats elicited in striatum a rapid and progressive increase in D2 receptor mRNA levels, which reached 70% after a 15-day treatment. By contrast, there was no apparent change in D2 receptor mRNA levels in cerebral cortex and pons-medulla, in spite of an increased density of D2 receptor in the former tissue. Using the PCR with primers flanking the alternative exon, we observed that the relative proportion of the shorter receptor isoform (D2S) mRNA was slightly but significantly enhanced in cerebral cortex (17%) and pons-medulla (18%) after a 15-day haloperidol treatment. Unilateral degeneration of dopamine neurons induced by local injection of 6-hydroxydopamine resulted in a marked decrease in levels of total D2 receptor mRNAs in substantia nigra (-79%) and ventral tegmental (-63%) area, two cell body areas. In the substantia nigra, the longer isoform (D2L) mRNA was significantly more decreased in content than the D2S isoform mRNA, so that there was a large enhancement in the relative abundance of the latter (81%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Friedreich ataxia (FA) is an autosomal recessive degenerative disease of the nervous system of unknown biochemical cause. The FA gene has been shown to be in close linkage with the two chromosome 9 markers D9S5 and D9S15, and linkage disequilibrium between FA and D9S15 has been detected in French families by Hanauer et al. We used new highly informative markers at the above loci to analyze Italian FA families for linkage and linkage disequilibrium. The new markers were a three-allele BstXI RFLP at D9S5 (PIC = .55) and a six-allele microsatellite, typed by polymerase chain reaction, at D9S15 (PIC = .75). We obtained maximum lod scores of 8.25 between FA and D9S5, 10.55 between FA and D9S15, and 9.52 between D9S5 and D9S15, all at zero recombination. Our results, combined with those reported by other authors, reduce maxlod-1 (maximum lod score minus 1) confidence limits to less than 1.1 cM between FA and D9S5, 1.2 cM between FA and D9S15, and 1.4 cM between D9S5 and D9S15. Linkage disequilibrium with FA was found only for D9S15 when all families were evaluated but was also found for a D9S5/D9S15 haplotype in a subgroup of southern Italian families. We conclude that FA, D9S5, and D9S15 are tightly clustered and that studies of geographically restricted groups may reveal a limited number of mutations responsible for the disease in the Italian population. We present preliminary evidence from pulsed-field gel electrophoresis that D9S5 and D9S15 may be less than 450 kb apart. Linkage disequilibrium between FA and D9S15 suggests that the disease gene may be at an even shorter distance from this marker locus, which therefore represents a very good starting point for cloning attempts.  相似文献   

7.
Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive retinal degeneration characterized by multiple glistening intraretinal dots scattered over the fundus, degeneration of the retina, and sclerosis of the choroidal vessels, ultimately resulting in progressive night blindness and constriction of the visual field. Although BCD has been associated with abnormalities in fatty-acid metabolism and absence of fatty-acid binding by two cytosolic proteins, the genetic basis of BCD is unknown. We report linkage of the BCD locus to D4S426 (maximum LOD score [Z(max)] 4.81; recombination fraction [straight theta] 0), D4S2688 (Zmax=3.97; straight theta=0), and D4S2299 (Zmax=5.31; straight theta=0), on chromosome 4q35-4qtel. Multipoint analysis confirmed linkage to the region telomeric of D4S1652 with a Z(max) of 5.3 located 4 cM telomeric of marker D4S2930.  相似文献   

8.
Lattice degeneration of the retina is a vitreoretinal disorder characterized by a visible fundus lesion predisposing the patient to retinal tears and detachment. The etiology of this degeneration is still uncertain, but it is likely that both genetic and environmental factors play important roles in its development. To identify genetic susceptibility regions for lattice degeneration of the retina, we performed a genome-wide association study (GWAS) using a dense panel of 23,465 microsatellite markers covering the entire human genome. This GWAS in a Japanese cohort (294 patients with lattice degeneration and 294 controls) led to the identification of one microsatellite locus, D2S0276i, in the collagen type IV alpha 4 (COL4A4) gene on chromosome 2q36.3. To validate the significance of this observation, we evaluated the D2S0276i region in the GWAS cohort and in an independent Japanese cohort (280 patients and 314 controls) using D2S0276i and 47 single nucleotide polymorphisms covering the region. The strong associations were observed in D2S0276i and rs7558081 in the COL4A4 gene (Pc = 5.8 × 10(-6), OR = 0.63 and Pc = 1.0 × 10(-5), OR = 0.69 in a total of 574 patients and 608 controls, respectively). Our findings suggest that variants in the COL4A4 gene may contribute to the development of lattice degeneration of the retina.  相似文献   

9.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct mental retardation syndromes caused by paternal and maternal deficiencies, respectively, in chromosome 15q11-q13. Approximately 70% of these patients have a large deletion of approximately 4 Mb extending from D15S9 (ML34) through D15S12 (IR10). To further characterize the deletion breakpoints proximal to D15S9, three new polymorphic microsatellite markers were developed that showed observed heterozygosities of 60%-87%. D15S541 and D15S542 were isolated from YAC A124A3 containing the D15S18 (IR39) locus. D15S543 was isolated from a cosmid cloned from the proximal right end of YAC 254B5 containing the D15S9 (ML34) locus. Gene-centromere mapping of these markers, using a panel of ovarian teratomas of known meiotic origin, extended the genetic map of chromosome 15 by 2-3 cM toward the centromere. Analysis of the more proximal S541/S542 markers on 53 Prader-Willi and 33 Angelman deletion patients indicated two classes of patients: 44% (35/80) of the informative patients were deleted for these markers (class I), while 56% (45/80) were not deleted (class II), with no difference between PWS and AS. In contrast, D15S543 was deleted in all informative patients (13/48) or showed the presence of a single allele (in 35/48 patients), suggesting that this marker is deleted in the majority of PWS and AS cases. These results confirm the presence of two common proximal deletion breakpoint regions in both Prader-Willi and Angelman syndromes and are consistent with the same deletion mechanism being responsible for paternal and maternal deletions. One breakpoint region lies between D15S541/S542 and D15S543, with an additional breakpoint region being proximal to D15S541/S542.  相似文献   

10.
The small heat shock proteins (sHsps) from human (Hsp27) and mouse (Hsp25) form large oligomers which can act as molecular chaperones in vitro and protect cells from heat shock and oxidative stress when overexpressed. In addition, mammalian sHsps are rapidly phosphorylated by MAPKAP kinase 2/3 at two or three serine residues in response to various extracellular stresses. Here we analyze the effect of sHsp phosphorylation on its quaternary structure, chaperone function, and protection against oxidative stress. We show that in vitro phosphorylation of recombinant sHsp as well as molecular mimicry of Hsp27 phosphorylation lead to a significant decrease of the oligomeric size. We demonstrate that both phosphorylated sHsps and the triple mutant Hsp27-S15D,S78D,S82D show significantly decreased abilities to act as molecular chaperones suppressing thermal denaturation and facilitating refolding of citrate synthase in vitro. In parallel, Hsp27 and its mutants were analyzed for their ability to confer resistance against oxidative stress when overexpressed in L929 and 13.S.1.24 cells. While wild type Hsp27 confers resistance, the triple mutant S15D,S78D,S82D cannot protect against oxidative stress effectively. These data indicate that large oligomers of sHsps are necessary for chaperone action and resistance against oxidative stress whereas phosphorylation down-regulates these activities by dissociation of sHsp complexes to tetramers.  相似文献   

11.
Virus-specific RNA synthesis in the midgut of silkworm infected with cytoplasmic-polyhedrosis virus was investigated under the condition inhibiting host RNA synthesis by actinomycin D injection. Two species of virus-induced RNA were formed; one was sensitive to ribonuclease (RNase) but the other was resistant. The resistant RNA had a sedimentation coefficient of 15 S and was considered as viral progeny with doublestranded RNA. The sensitive RNA, presumably single-stranded RNA, consisted of two classes with 15 S and 22 S sedimentation coefficients. Annealing the single-stranded RNA with heat-denatured CPV-RNA indicated that the single-stranded RNA was transcribed from viral genome RNA. The function of 22 S and 15 S single-stranded RNAs was discussed from the viewpoint of virus multiplication.  相似文献   

12.
Summary Six Prader-Willi syndrome (PWS) patients with normal karyotypes and their parents were analyzed to determine the nature of the molecular aberrations present in the proximal region of 15q and to determine the parental origin of the aberrant chromosome 15. In addition, the likehood that uniparental disomy plays a significant role in the etiology of PWS patients with normal karyotypes was studied. Restriction fragment length polymorphisms (RFLPs) recognized by seven probes [pML34 (D15S9), pTD3-21, pCGS0.9, pCGS1.1 (D15S10), IR4.3 (D15S11), IR10.1 (DS15S12), p189-1 (D15S13), IR39 (D15S18), and CMW-1 (D15S24)] mapping to the Prader-Willi chromosome region (PWCR) and an additional two probes [pMS1-14 (D15S1); the cDNA of neuromedin B] mapping elsewhere on chromosome 15 were analyzed in the six PWS patients and their parents. Copy number of each locus within the PWCR was determined by densitometry. Molecular rearrangements of the proximal region of 15q were observed in all of the six probands and the origin of the aberrant chromosome 15 when determined was consistently paternal in origin. While data obtained from our six patients does not support the mechanism of disomy, results obtained from three of the six patients show more complex rearrangements hypothesized to have resulted from somatic recombination. These rearrangements have resulted in acquired homozygosity and the lack of a paternal allele at various loci within the PWCR. The presence of only a maternal contribution at certain loci as the result of somatic recombination may be another mechanism by which genetic imprinting plays a role in the presentation of the PWS phenotype.  相似文献   

13.
The short arm of chromosome 3 undergoes genetic loss in most small-cell lung cancers and renal cell carcinomas. The most frequently deleted region includes the DNF15S2 locus (mapped to 3p21), suggesting that a putative recessive tumor-suppressor gene might be located nearby. A cosmid clone, cA476, contains the D3S94 locus and two HTF islands and detects a PstI RFLP. We have isolated cDNAs homologous to conserved fragments within cA476; and these cDNAs have 96% sequence similarity to a cDNA derived from the DNF15S2 locus. Sequence information from cDNAs derived from both the rat and pig acyl-peptide hydrolase (E.C.3.4.19.1) gene show that they have a high degree of sequence similarity to cDNAs derived from D3S94 and DNF15S2, suggesting that they are all the same locus. Cosmid cA476 (DNF15S2) has been mapped, by fluorescent in situ hybridization, to chromosome 3p21.3. D3S94 and DNF15S2 are quite distinct from aminoacylase 1 (ACY1), which has been physically linked to D3S2, D3S92, and D3S93, all localized within 3p21.1.  相似文献   

14.
Allelic frequencies and other population data analysis are reported for the 15 autosomal Short Tandem Repeats (STR) loci included in the PowerPlex®16 kit (CSF1PO, D13S317, D16S539, D18S51, D21S11, D3S1358, D5S818, D7S820, D8S1179, FGA, Penta D, Penta E, TPOX, TH01 and vWA) in Pomeranian’s descendants from the Espirito Santo State (ES), Brazil, third largest population of Pomeranian’s descendants in the world. They chose the mountain region of the state for their preferred geographic location, and they have a very peculiar lifestyle with a selective mating behavior which has maintained their characteristics as a relatively pure subpopulation. Blood samples were obtained from 82 unrelated volunteers from 11 different cities of Espirito Santo State, where there are the Pomeranian’s descendants. All 15 loci analyzed showed Power of Discrimination (PD) values > 0.75. Except the TPOX locus, all analyzed loci were at Hardy–Weinberg equilibrium. This subpopulation has not yet been characterized for STR allelic frequencies used for forensic and genetic identification studies.  相似文献   

15.
Pyoderma gangrenosum, cystic acne, and aseptic arthritis are clinically distinct disorders within the broad class of inflammatory diseases. Although this triad of symptoms is rarely observed in a single patient, a three-generation kindred with autosomal-dominant transmission of these three disorders has been reported as "PAPA syndrome" (MIM 604416). We report mapping of a disease locus for familial pyoderma gangrenosum-acne-arthritis to the long arm of chromosome 15 (maximum two-point LOD score, 5.83; recombination fraction [straight theta] 0 at locus D15S206). Under the assumption of complete penetrance, haplotype analysis of recombination events defined a disease interval of 10 cM, between D15S1023 and D15S979. Successful identification of a single disease locus for this syndrome suggests that these clinically distinct disorders may share a genetic etiology. These data further indicate the role of genes outside the major histocompatibility locus in inflammatory disease.  相似文献   

16.
We have studied the inverted duplicated chromosomes 15 (inv dup(15)) from 11 individuals--7 with severe mental retardation and seizures, 3 with a normal phenotype, and 1 with Prader-Willi syndrome (PWS). Through a combination of FISH and quantitative DNA analyses, three different molecular sizes of inv dup(15) were identified. The smallest inv dup(15) was positive only for the centromeric locus D15Z1 (type 1); the next size was positive for D15Z1 and D15S18 (type 2); and the largest inv dup(15) was positive for two additional copies of loci extending from D15Z1 and D15S18 through D15S12 (type 3). Type 1 or type 2 was observed in the three normal individuals and the PWS patient. Type 3 was observed in all seven individuals with mental retardation and seizures but without PWS or Angelman Syndrome (AS). The PWS patient, in addition to being mosaic for a small inv dup(15), demonstrated at D15S63 a methylation pattern consistent with maternal uniparental inheritance of the normal chromosomes 15. The results from this study show (a) two additional copies of proximal 15q loci, D15S9 through D15S12, in mentally retarded patients with an inv dup(15) but without AS or PWS and (b) no additional copies of these loci in patients with a normal phenotype or with PWS.  相似文献   

17.
Genetic diversity and forensic parameters based on 15AmpFlSTR Identifiler short tandem repeat (STR) loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818 and FGA) were evaluated in a sample of 101 unrelated, autochthonous adults from Montenegro. After applying Bonferroni correction, the agreement with Hardy-Weinberg equilibrium (HWE) was confirmed for all loci with the exception of D5S818 (chi2 test) and D21S11 (exact test). The combined power of discrimination (PD) and the combined power of exclusion (PE) for the 15 studied loci were 0.9999999999999999844 and 0.99999382, respectively. According to measures of within-population genetic diversity, D2S1338, D18S51 and FGA may be considered as the most variable and most informative markers for forensic testing and population genetic analyses out of the 15 analysed loci in a population of Montenegro. D5S818 showed to be the least variable and together with TPOX, the least informative. Interpopulation comparisons were carried out and levels of genetic differentiation between population of Montenegro and five South-eastern European populations (Kosovo Albanians, Serbians from Vojvodina province, Macedonians, Bosnians and Croatians) were evaluated. The most differentiated population in relation to Montenegro is a population of Kosovo Albanians as suggested by both AMOVA and coefficients of genetic differentiation (F(ST) and R(ST)).  相似文献   

18.
DNA from members of 15 pedigrees each containing between three and eight cases of breast cancer have been collected from southeastern Scotland. Polymorphic markers on chromosome 17q were screened to locate a putative breast cancer gene by using DNA from relevant individuals within these families. Pairwise LOD scores were calculated for markers D17S74, NM23, D17S588, and D17S579. The maximal summated LOD for the 15 families was 5.44 at theta = .034, when D17S588 (42D6) was used. In these breast cancer families, a subset which did not give evidence for linkage to this region could be identified.  相似文献   

19.
GC-7 cells, a cell line from African green monkey kidney, which had been growth arrested in G0 phase by serum deprivation, entered S phase 15 h after serum stimulation. They were blocked from entering S phase in the presence of 0.6 micrograms/ml of cytochalasin D. The cells growth arrested between G0 and S phase by cytochalasin D entered S phase 6 h following the removal of the drug. The progression of S, G2, and M phases was not affected by cytochalasin D. On the other hand, when G0-arrested GC-7 cells were stimulated with serum for 23 h up to a late S/G2 phase and then cultured in the presence of cytochalasin D, or when an exponentially growing culture was treated with the drug, the cells were growth arrested at a point 15 h, not 6 h, before the next S phase. This point of growth arrest is kinetically similar to G0 phase, both occur 15 h before S phase, but is different from G0 in terms of c-fos expression after release from the block.  相似文献   

20.
Angelman syndrome (AS) and Prader-Willi syndrome (PWS) share a cytogenetic deletion of chromosome 15q11q13. To determine the extent of deletion in AS we analyzed the DNA of 19 AS patients, including two sib pairs, with the following chromosome 15q11q13--specific DNA markers: D15S9-D15S13, D15S17, D15S18, and D15S24. Three molecular classes were identified. Class I showed a deletion of D15S9-D15S13 and D15S18; class II showed a deletion of D15S9-D15S13; and in class III, including both sib pairs, no deletion was detected. These molecular classes appear to be identical to those observed in PWS. High-resolution cytogenetic data were available on 16 of the patients, and complete concordance between the presence of a cytogenetic deletion and a molecular deletion was observed. No submicroscopic deletions were detected. DNA samples from the parents of 10 patients with either a class I or a class II deletion were available for study. In seven of the 10 families, RFLPs were informative as to the parental origin of the deletion. In all informative families, the deleted chromosome 15 was observed to be of maternal origin. This finding is in contrast to the paternal origin of the deletions in PWS and is currently the only molecular difference observed between the two syndromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号