首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of amino acids to the DMSO buffer reduces the intracellular amino acid depletion of rat skin tissue frozen and stored at ?196 °C.Although prolonged exposure to DMSO progressively inhibits the [2-14C]glycine and l-[U-14C]leucine incorporation into the proteins, cortisol and amino acid additions to the buffer medium protect the protein-synthesizing activity. These factors also stimulate the incorporation of [6-3H]-thymidine into DNA. The stimulatory characteristics of cortisol and of amino acids separately are enhanced when both components are added together to the preserving buffer. These effects are noticeable in tissue only exposed to the DMSO buffer without freezing as well as in skin frozen and stored at ?196 °C and subsequently thawed at 40 °C.A stimulatory effect of cortisol and of a free amino acid, supplement to the medium on the α-amino-[1-14C]isobutyric acid uptake by the cells is only observed in skin exposed for a short period of time to the DMSO buffer, but it is not detectable after longer exposure and after freezing.  相似文献   

2.
  • 1.1. Transport of neutral amino acids by the isolated seminal vesicle epithelium of normal and gonadectomized guinea pigs has been investigated by measurement of the uptake of 2-amino[1-14C]-isobutyric acid and 2-methylamino[1-14C]isobutyric acid.
  • 2.2. The Vmax for Na-dependent and -independent transport of both amino acids was reduced by gonadectomy but the general transport characteristics appeared to be unchanged by this treatment.
  • 3.3. The most likely explanation of the decreased transport is the loss of transporter molecules associated with the tissue regression that follows rapidly on gonadectomy.
  相似文献   

3.
TRANSPORT OF LYSINE FROM CEREBROSPINAL FLUID OF THE CAT   总被引:1,自引:0,他引:1  
—The clearance from cerebrospinal fluid of l-[14C]lysine and l-[3H]arginine was measured during ventriculo-cisternal perfusions of anaesthetized cats. Increasing in the perfusate the concentration of unlabelled l-lysine produced a gradual reduction in clearance of the labelled amino acids without altering the uptake of l-[14C]lysine by the choroid plexus. Net transport of l-lysine out of cerebrospinal fluid occurred by saturable and non-saturable components. The saturable component satisfied Michaelis-Menton kinetics, while the behaviour of the non-saturable component was consistent with diffusion. A Vmax of 0·017 μmol/min and an affinity constant (kt) of 0·83 mm were estimated. The clearance of l-lysine was unaffected by the addition to the perfusate of high concentrations of selected neutral amino acids, but was stimulated by the presence of l-cystine. Conversely, a high concentration of l-lysine did not affect the clearance of glycine or cycloleucine. The dibasic amino acids appear to be removed from cerebrospinal fluid by a relatively specific, mediated transport system which may serve to regulate their concentrations in the cerebrospinal fluid.  相似文献   

4.
The effects of insulin, glucagon or Dexamethasone (DEX) and of glucagon with insulin or DEX were examined on the uptake of 2-amino [1-14C]isobutyric acid (AIB) and N-Methyl-2-amino [1-14C]isobutyric acid (NMe AIB) in monolayer cultures of rat hepatocytes. Insulin and glucagon stimulated the uptake of both the amino acids and DEX inhibited it, showing that all three of these hormones regulate the A system (the sodium-dependent system that permits the transport of NMe AIB) for amino acid transport in these cultures. Experiments investigating the transport of aminocyclopentane-1-carboxylic acid, 1- [carboxyl-14C] in the presence of excess AIB or in the absence of sodium showed that insulin had no effect on the activity of the L system (the sodium-independent system that prefers leucine). Experiments on the uptake of AIB in the presence of excess NMe AIB showed insulin had no effect on the transport activity of the ASC system (the sodium-dependent system that does not transport NEe AIB). Insulin concentrations ranging from 0.1 nM to 100 nM did not antagonize the stimulatory effect of optimum or suboptimum concentrations of glucagon on the uptake of either AIB or NMe AIB. Similarly, glucagon did not antagonize the stimulatory effect of optimum or suboptimum concentrations of insulin on the uptake of both the amino acids. The combined effect of insulin and glucagon was additive on the rate as well as the cumulative uptake of both AIB and NMe AIB. DEX alone inhibited the transport of both AIB and NMe AIB by about 25%, while glucagon caused a 2–3-fold increase; however, the addition of glucagon to cultures containing DEX caused a 7–8-fold increase in the uptake of both AIB and NMe AIB when compared to cultures containing DEX alone. The effect of insulin on the levels of cAMP was also investigated. Insulin had no effect on the cAMP levels in cultures treated or untreated with optimum or suboptimum concentrations of glucagon.  相似文献   

5.
Measurements of the tissue accumulation of α-amino[1-14C]isobutyrate [1-14C]AIB) in lean (+/?) and obese (fa/fa) Zucker rats showed an augmented tissue/plasma ratio in the liver of the obese animals. In contrast, brown adipose tissue AIB accumulation was lower in the fa/fa animals. In response to a 24h starvation period AIB accumulation was significantly elevated in the liver and plasma of the lean animals and was unchanged in the liver of the fa/fa animals. The circulating concentration of alanine and branched-chain amino acids was elevated in the fa/fa animals as compared to their lean counterparts. These observations suggest that amino acid uptake is not involved in the impaired muscle development observed in the obese Zucker rat and that the ability of brown adipose tissue for amino acid utilization is decreased in the obese animals suggesting that this may partially explain the impaired thermoregulatory capacity observed in brown adipose tissue of obese Zucker rats.  相似文献   

6.
In the absence of any other oxidizable substrate, the perfused rat heart oxidizes [1-14C]leucine to 14CO2 at a rapid rate and releases only small amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such perfused hearts, is very active. Under such perfusion conditions, dichloroacetate has almost no effect on [1-14C]leucine oxidation, α-[1-14C]ketoisocaproate release, or branched-chain α-keto acid dehydrogenase activity. Perfusion of the heart with some other oxidizable substrate, e.g., glucose, pyruvate, ketone bodies, or palmitate, results in an inhibition of [1-14C]leucine oxidation to 14CO2 and the release of large amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such hearts, is almost completely inactivated. The enzyme can be reactivated, however, by incubating the mitochondria at 30 °C without an oxidizable substrate. With hearts perfused with glucose or ketone bodies, dichloroacetate greatly increases [1-14C]leucine oxidation, decreases α-[1-14C]ketoisocaproate release into the perfusion medium, and activates the branched-chain α-keto acid dehydrogenase complex. Pyruvate may block dichloroacetate uptake because dichloroacetate neither stimulates [1-14C]leucine oxidation nor activates the branched-chain α-keto acid dehydrogenase complex of pyruvate-perfused hearts. It is suggested that leucine oxidation by heart is regulated by the activity of the branched-chain α-keto acid dehydrogenase complex which is subject to interconversion between active and inactive forms. Oxidizable substrates establish conditions which inactivate the enzyme. Dichloroacetate, known to activate the pyruvate dehydrogenase complex by inhibition of pyruvate dehydrogenase kinase, causes activation of the branched-chain α-keto acid dehydrogenase complex, suggesting the existence of a kinase for this complex.  相似文献   

7.
Uptake of 14C-labelled α-amino isobutyric acid and a mixture of naturally occurring amino acids by normal mouse preimplantation blastocysts was found to be twice that of delayed implantation blastocysts. With both groups of embryos concentration of the amino acids against a gradient occurred. The results may explain, in part, the lower amino acid incorporation rates found with diapausing vs. normal blastocysts and open the question of “metabolic dormancy” of the diapausing embryo.  相似文献   

8.
The effects of growth hormone-dependent serum factors on amino acid transport and on cartilage cyclic AMP levels in embryonic chicken cartilage were studied in vitro. Cartilages incubated in medium containing rat serum showed a significantly greater uptake of α-amino [1-14C] isobutyrate or [1-14C] cycloeeucine than control cartilages incubated in medium alone. Normal rat serum (5%) added to the incubation medium also caused an increase in cartilage cyclic AMP content (from as little as 23% to as much as 109%). The factors in serum which increase cartilage cyclic AMP and amino acid uptake are growth hormone dependent, since neither growth hormone itself nor serum from hypophysectomized rats affects either parameter. Growth hormone treatment of hypophysectomized rats restores these serum factors. Studies comparing the ability of sera with varying amounts of growth hormone-dependent factors to stimulate α-aminoisobutyrate transport and to increase cartilage cyclic AMP show a striking linear correlation between the two effects (r = 0.977). Theophylline and prostaglandin E1, which raise cartilage cyclic AMP also increase α-aminoisobutyrate transport. Exogenous cyclic AMP, N6-monobutyrll cyclic AMP and N6, O2′-dibutyryl cyclic AMP increase cartilage α-aminoisobutyrate transport. The data are compatible with the thesis that growth hormone-dependent serum factors increase cartilage amino acid transport by elevating cartilage cyclic AMP.  相似文献   

9.
—The blood-brain barrier transport of amino acids has been measured using the carotid injection technique in the rat. The synthetic amino acids, 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH) and α-(methylamino)isobutyric acid (MeAIB), were model substrates in the Ehrlich cell for the leucine (L) and alanine (A) neutral amino acid transport mechanisms, respectively. The uptake (±)b-[carboxyl-14C]BCH at the same rate for the five brain regions tested suggested a similarity between regions for the L transport mechanism. At injectant concentrations of 0·1 mm (similar to naturally occurring aromatic neutral amino acids), BCH was mainly taken up by a saturable mediated transport mechanism (K1, 0·16 mm and Vmax, 0·03/μmol/g per min). At higher concentrations, uptake by a nonsaturable or diffusional mechanism could be demonstrated. When BCH was added as a second amino acid to l -[3-14C]DOPA, the saturable component of l -DOPA transport was significantly inhibited. MeAIB had no measurable effect on the rate of l -DOPA transport. These results suggested that the mediated transport mechanism for l -DOPA at the cerebral capillaries is similar to the l -neutral amino acid transport system.  相似文献   

10.
—Data comparing tricarboxylic acid cycle dynamics in mitochondria from rabbit brain using [2- or 3-14C]pyruvate with and without cosubstrates (malate, α-ketoglutarate, glutamate) are reported. With a physiological concentration of an unlabelled cosubstrate, from 90-99% of the isotope remained in cycle intermediates. However, the liberation of 14CO2 and the presence of 14C in the C-1 position of α-ketoglutarate indicated that multiple turns of the cycle occurred. Entry of pyruvate into the cycle was greater with malate than with either α-ketoglutarate or glutamate as cosubstrate. With malate as cosubstrate for [14C]pyruvate the amount of [14C]citrate which accumulated averaged 30nmol/ml or 23% of the pyruvate utilized while α-ketoglutarate averaged 45 nmol/ml or 35% of the pyruvate utilized. With α-ketoglutarate as cosubstrate for [14C]pyruvate, the average amount of [14C]citrate which accumulated decreased to 8 nmol/ml or 10% of the pyruvate utilized while [14C]α-ketoglutarate increased slightly to 52 nmol/ml or an increase to 62%, largely due to a decrease in pyruvate utilization. The percentage of 14C found in α-ketoglutarate was always greater than that found in malate, irrespective of whether α-ketoglutarate or malate was the cosubstrate for either [2- or 3-14C]pyruvate. The fraction of 14CO2 produced was slightly greater with α-ketoglutarate as cosubstrate than with malate. This observation and the fact that malate had a higher specific activity than did α-ketoglutarate when α-ketoglutarate was the cosubstrate, indicated a preferential utilization of α-ketoglutarate formed within the mitochondria. When l -glutamate was a cosubstrate for [14C]pyruvate the principal radioactive product was glutamate, formed by isotopic exchange of glutamate with [14C] α-ketoglutarate. If malate was also added, [14C]citrate accumulated although pyruvate entry did not increase. Due to retention of isotope in glutamate, little [14C]succinate, malate or aspartate accumulated. When [U-14C]l -glutamate was used in conjunction with unlabelled pyruvate more 14C entered the cycle than when unlabelled glutamate was used with [14C]pyruvate and led to α-ketoglutarate, succinate and aspartate as the major isotopic products. When in addition, unlabelled malate was added, total and isotopic α-ketoglutarate increased while [14C]aspartate decreased. The increase in [14C]succinate when [14C] glutamate was used indicated an increase in the flux through α-ketoglutarate dehydrogenase and was accompanied by a decrease of pyruvate utilization as compared to experiments when either α-ketoglutarate or glutamate were present at low concentration. It is concluded that the tricarboxylic acid cycle in brain mitochondria operates in at least three open segments, (1) pyruvate plus malate (oxaloacetate) to citrate; (2) citrate to α-ketoglutarate and; (3) α-ketoglutarate to malate, and that at any given time, the relative rates of these segments depend upon the substrate composition of the environment of the mitochondria. These data suggest an approach to a steady state consistent with the kinetic properties of the tricarboxylic acid cycle within the mitochondria.  相似文献   

11.
1. The testis of the ram secretes considerable amounts of amino acids (200μmoles/day) into the fluid collected from the efferent ducts. The principal amino acid in this testicular fluid is glutamate, which is present in concentrations about eight times those in testicular lymph or in blood from the internal spermatic vein. 2. The concentration of glutamate in seminal plasma from the tail of the epididymis is about ten times that in testicular fluid, and, though glutamate is the major amino acid in ejaculated seminal plasma, its concentration is less than in epididymal plasma. 3. After the intravenous infusion of [U-14C]glucose, labelled glutamate was found in the testicular fluid. Radioactivity was also detected in alanine, glycine, serine plus glutamine and aspartate. Alanine had the highest specific activity, about 50% of the specific activity of blood glucose. 4. When [U-14C]glutamate was infused, the specific activity of glutamate in testicular fluid was only about 2% that in the blood plasma. 5. Testicular and ejaculated ram spermatozoa oxidized both [U-14C]glutamate and [U-14C]leucine to a small extent, but neither substrate altered the respiration from endogenous levels. 6. No radioactivity was detected in testicular spermatozoal protein after incubation with [U-14C]glutamate or [U-14C]leucine. Small amounts of radioactivity were detected in protein from ejaculated ram spermatozoa after incubation with [U-14C]glutamate. 7. The carbon of [U-14C]glucose was incorporated into amino acids by testicular spermatozoa; most of the radioactivity occurred in glutamate.  相似文献   

12.
—Glucose is a major precursor of glutamate and related amino acids in the retina of adult rats. 14C from labelled glucose appears to gain access to a large glutamate pool, and the resulting specific activity of glutamate labelled from glucose is always higher than that of glutamine or the other amino acids. Radioactive acetate appeared to label a small glutamate pool. The specific activity of glutamine labelled from acetate relative to that of glutamate was always greater than 1.0. Other precursors of the small glutamate pool were found to include glutamate, aspartate, GABA, serine, leucine and sodium bicarbonate. The level of radioactivity present in retinae incubated with [U-14C]glucose or [1-14C]sodium acetate was reduced in the presence of 10?5m -ouabain. Under these conditions, the relative specific activity of glutamine labelled from [1-14C]sodium acetate was lowered, but it was raised when [U-14C]glucose was used as substrate. Ouabain also considerably reduced the synthesis of GABA from [1-14C]sodium acetate. In all cases ouabain caused a fall in the tissue levels of the amino acids. Aminooxyacetic acid (10?4m ) almost completely abolished the labelling of GABA from both [U-14C]glucose and [1-14C]sodium acetate, while the RSA of glutamine labelled from the latter substrate was significantly increased. Aminooxyacetic acid raised the tissue concentration of glutamate, but caused a fall in the tissue concentrations of glutamine, aspartate and GABA. The results suggest that there are separate compartments for the metabolism of glutamate in retina and that these can be modified in different ways by different drugs.  相似文献   

13.
Labeling studies using detached lupin (Lupinus angustifolius) nodules showed that over times of less than 3 minutes, label from [3,4-14C]glucose was incorporated into amino acids, predominantly aspartic acid, to a much greater extent than into organic acids. Only a slight preferential incorporation was observed with [1-14C]- and [6-14C]glucose, while with [U-14C]-glucose more label was incorporated into organic acids than into amino acids at all labeling times. These results are consistent with a scheme whereby the “carbon skeletons” for amino acid synthesis are provided by the phosphoenolpyruvate carboxylase reaction.  相似文献   

14.
The metabolism of d-gluconate-[1-14C] and -[6-14C] by segments from etiolated hypocotyls of Phaseolus mungo has been studied. The release of 14CO2 from gluconate-[1-14C] was greater than that from gluconate-[6-14C] in all parts of hypocotyls examined. Incorporation of the radioactivity from gluconate-[6-14C] into RNA, lignin and aromatic amino acid fractions was greater in the upper (younger) part of the hypocotyls. Incorporation into sugars was greater in the lower (more mature) parts.  相似文献   

15.
We have investigated the glycine, serine and leucine metabolism in slices of various rat brain regions of 14-day-old or adult rats, using [1-14C]glycine, [2-14C]glycine, L-[3-14C]serine and L-[U-14C]leucine. We showed that the [1-14C]glycine oxidation to CO2 in all regions studied occurs almost exclusively through its cleavage system (GCS) in brains of both 14-day-old and adults rats. In 14-day-old rats, the highest oxidation of [1-14C]glycine was in cerebellum and the lowest in medulla oblongata. In these animals, the L-[U-14C]leucine oxidation was lower than the [1-14C]glycine oxidation, except in medulla oblongata where both oxidations were the same. Serine was the amino acid that showed lowest oxidation to CO2 in all structure studied. In adult rats brains, the highest oxidation of [1-14C]glycine was in cerebral cortex and the lowest in medulla oblongata. We have not seen difference in the lipid synthesis from both glycine labeled, neither in 14-day-old rats nor in adult ones, indicating that the lipids formed from glycine were not neutral. Lipid synthesis from serine was significantly high than lipid synthesis and from all other amino acids studied in all studied structures. Protein synthesis from L-[U-14C]leucine was significantly higher than that from glycine in all regions and ages studied.  相似文献   

16.
—The origin of the acetyl group in acetyl-CoA which is used for the synthesis of ACh in the brain and the relationship of the cholinergic nerve endings to the biochemically defined cerebral compartments of the Krebs cycle intermediates and amino acids were studied by comparing the transfer of radioactivity from intracisternally injected labelled precursors into the acetyl moiety of ACh, glutamate, glutamine, ‘citrate’(= citrate +cis-aconitate + isocitrate), and lipids in the brain of rats. The substrates used for injections were [1-14C]acetate, [2-14C]acetate, [4-14C]acetoacetate, [1-14C]butyrate, [1, 5-14C]citrate, [2-14C]glucose, [5-14C]glutamate, 3-hydroxy[3-14C]butyrate, [2-14C]lactate, [U-14C]leucine, [2-14C]pyruvate and [3H]acetylaspartate. The highest specific radioactivity of the acetyl group of ACh was observed 4 min after the injection of [2-14C]pyruvate. The contribution of pyruvate, lactate and glucose to the biosynthesis of ACh is considerably higher than the contribution of acetoacetate, 3-hydroxybutyrate and acetate; that of citrate and leucine is very low. No incorporation of label from [5-14C]glutamate into ACh was observed. Pyruvate appears to be the most important precursor of the acetyl group of ACh. The incorporation of label from [1, 5-14C]citrate into ACh was very low although citrate did enter the cells, was metabolized rapidly, did not interfere with the metabolism of ACh and the distribution of radioactivity from it in subcellular fractions of the brain was exactly the same as from [2-14C]pyruvate. It appears unlikely that citrate, glutamate or acetate act as transporters of intramitochondrially generated acetyl groups for the biosynthesis of ACh. Carnitine increased the incorporation of label from [1-14C]acetate into brain lipids and lowered its incorporation into ACh. Differences in the degree of labelling which various radioactive precursors produce in brain glutamine as compared to glutamate, previously described after intravenous, intra-arterial, or intraperitoneal administration, were confirmed using direct administration into the cerebrospinal fluid. Specific radioactivities of brain glutamine were higher than those of glutamate after injections of [1-14C]acetate, [2-14C]acetate, [1-14C]butyrate, [1,5-14C]citrate, [3H]acetylaspartate, [U-14C]leucine, and also after [2-14C]pyruvate and [4-14C]acetoacetate. The intracisternal route possibly favours the entry of substrates into the glutamine-synthesizing (‘small’) compartment. Increasing the amount of injected [2-14C]pyruvate lowered the glutamine/glutamate specific radioactivity ratio. The incorporation of 14C from [1-14C]acetate into brain lipids was several times higher than that from other compounds. By the extent of incorporation into brain lipids the substrates formed four groups: acetate > butyrate, acetoacetate, 3-hydroxybutyrate, citrate > pyruvate, lactate, acetylaspartate > glucose, glutamate. The ratios of specific radioactivity of ‘citrate’ over that of ACh and of glutamine over that of ACh were significantly higher after the administration of [1-14C]acetate than after [2-14C]pyruvate. The results indicate that the [1-14C]acetyl-CoA arising from [1-14C]acetate does not enter the same pool as the [1-14C]acetyl-CoA arising from [2-14C]pyruvate, and that the cholinergic nerve endings do not form a part of the acetate-utilizing and glutamine-synthesizing (‘small’) metabolic compartment in the brain. The distribution of radioactivity in subcellular fractions of the brain after the injection of [1-14C]acetate was different from that after [1, 5-14C]citrate. This suggests that [1-14C]acetate and [1, 5-14C]citrate are utilized in different subdivisions of the ‘;small’ compartment.  相似文献   

17.
METABOLISM OF MALONIC ACID IN RAT BRAIN AFTER INTRACEREBRAL INJECTION   总被引:4,自引:4,他引:0  
Labeled malonic acid ([1-14C] and [2-14C]) was injected into the left cerebral hemisphere of anesthetized adult rats in order to determine the metabolic fate of this dicarboxylic acid in central nervous tissue. The animals were allowed to survive for 2, 5, 10. 15 or 30min. Blood was sampled from the torcular during the experimental period and labeled metabolites were extracted from the brain after intracardiac perfusion. There was a very rapid efflux of unreacted malonate in the cerebral venous blood. Labeled CO2 was recovered from the venous blood and the respired air after the injection of [1-14C]malonate but not after [2-14C]malonate. The tissue extracts prepared from the brain showed only minimal labeling of fatty acids and sterols. Much higher radioactivity was present in glutamate, glutamine, aspartate, and GABA. The relative specific activities (RSA) of glutamine never rose above 1.00. Aspartate was labeled very rapidly and revealed evidence of 14CO2 fixation in addition to labeling through the Krebs cycle. GABA revealed higher RSA after [1-14C]malonate than after [2-14C]malonate. Sequential degradations of glutamate and aspartate proved that labeling of these amino acids occurred from [1-14C] acetyl-CoA and [2-14C] acetyl-CoA, respectively, via the Krebs cycle. Malonate activation and malonyl-CoA decarboxylation in vivo were similar to experiments with isolated mitochondria. However, labeled malonate was not incorporated into the amino acids of free mitochondria. The results were compared to data obtained after intracerebral injection of [1-14C]acetate and [2-14C]acetate.  相似文献   

18.
—(1) The effects of aminooxyacetic acid, ouabain and Ca2+ on the compartmentation of amino acid metabolism have been studied in slices of brain incubated with sodium-[1-14C]acetate, l-[U-14C]glutamate and l-[U-14C]aspartate as tracer metabolites. (2) Aminooxyacetic acid (10-3 m) inhibited the labelling of aspartate from [14C]acetate and [14C]glutamate, as well as the incorporation of label from [14C]aspartate into glutamate and glutamine. It also inhibited the labelling of GABA from all three radioactive precursors, as would be anticipated if there was inhibition of several transaminases as well as glutamate decarboxylase. The RSA of glutamine labelled from [1-14C]acetate was increased. This finding indicated that the glutamate pool which is utilized for glutamine formation is associated with glutamate dehydrogenase, and this enzyme appears to be related to the ‘synthetic tricarboxylic acid cycle’. AOAA exerted its major inhibitory effects on the citric acid‘energy cycle’with which transaminases are associated. (3) Ouabain (10-5 m) inhibited the labelling of glutamine to a much greater extent than the labelling of glutamate from [1-14C]acetate. It also caused leakage of amino acids from the tissue into the medium. Its effect on the glutamate–glutamine system was interpreted to be a selective inhibition of the 'synthetic’citric acid cycle. (4) The omission of Ca2+ from the incubation medium was associated with formation of glutamine with RSA less than 1·0 when labelled from [U-14C]glutamate, [U-14C]aspartate and lower than normal when labelled from [1-14C]acetate.  相似文献   

19.
Abstract— D-β-hydroxybutyrate (β-OHB) was compared to glucose as a precursor for brain amino acids during rat development. In the first study [3-14C]β-OHB or [2-14C]glucose was injected subcu-taneously (01 μCi/g body wt) into suckling rats shortly after birth and at 6. 11, 13, 15 and 21 days of age. Blood and brain tissue were obtained 20 min later after decapitation. The specific activity of the labelled precursor in the blood and in the brain tissue was essentially the same for each respective age suggesting that the labelled precursor had equilibrated between the blood and brain pools before decapitation. [3-14C]β-OHB rapidly labelled brain amino acids at all ages whereas [2-14C]glucose did not prior to 15 days of age. These observations are consistent with a maturational delay in the flux of metabolites through glycolysis and into the tricarboxylic acid cycle. Brain glutamate, glutamine, asparate and GABA were more heavily labelled by [3-14C]β-OHB from birth-15 days of age whereas brain alanine was more heavily labelled by [2-14C]glucose at all ages of development. The relative specific activity of brain glutamine/glutamate was less than one at all ages for both labelled precursors suggesting that β-OHB and glucose are entering the‘large’glutamate compartment throughout development. In a second study, 6 and 15 day old rats were decapitated at 5 min intervals after injection of the labelled precursors to evaluate the flux of the [14C]label into brain metabolites. At 6 days of age, most of the brain acid soluble radioactivity was recovered in the glucose fraction of the [2-,4C]glucose injected rats with 72, 74, 65 and 63% after 5, 10, 15 and 20 min. In contrast, the 6 day old rats injected with [3-14C]β-OHB accumulated much of the brain acid soluble radioactivity in the amino acid fraction with 22, 47, 57 and 54% after 5, 10, 15 and 20 min. At 15 days of age the transfer of the [14C]label from [2-14C]glucose into the brain amino acid fraction was more rapid with 29, 40, 45, 61 and 73% of the brain acid soluble radioactivity recovered in the amino acid fraction after 5, 10, 15, 20 and 30 min. There was almost quantitative transfer of [14C]label into the brain amino acids of the 15-day-old [3-14C]β-OHB injected rats with 66, 89, 89, 89 and 90% of the brain acid soluble radioactivity recovered in the amino acid fraction after 5, 10, 15, 20 and 30 min. The calculated half life for /?-OHB at 6 days was 19 8 min and at 15 days was 12-2 min. Surprisingly, the relative specific activity of brain GABA/glutamate was lower at 15 days of age in the [3-14C]β-OHB injected rats compared to the [2-14C]glucose injected rats despite a heavier labelling of brain glutamate in the [3-14C]β-OHB injected group. We interpreted these data to mean that β-OHB is a less effective precursor for the brain glutamate ‘subcompartment’ which is involved in the synthesis of GABA.  相似文献   

20.
Ladaslav Sodek 《Phytochemistry》1976,15(12):1903-1906
Tracer studies with aspartic acid-[4-14C], alanine-[1-14C] acetate-[2-14C] and diaminopimelic acid-[1,(7)-14C] injected into the developing endosperm of maize revealed that the biosynthesis of lysine and other amino acids occurs in this organ. The data suggest that lysine is synthesized via the diaminopimelic acid pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号