首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonspecific interactions between immobilized biomolecules and interfering proteins significantly impede biosensor development and commercialization. Advances in bioinformatics and computer technology have facilitated a greater understanding of biological interactions. We employed two different protein–protein docking programs to simulate the nonspecific interaction between ampicillin antibody and potential interfering proteins (human serum albumin and ovalbumin). To evaluate the contact and probability of association with the active site of the antibody, different amino acid chains from human serum albumin (HSA) and ovalbumin (OVA) were modeled in the simulation. In addition, a well-known specific immune complex, lysozyme and lysozyme antibody, was simulated for comparison. The results demonstrated that the cluster density of nonspecific interactions was smaller than the specific interaction between lysozyme and antibody, and that the dock scores were scattered. However, the active site of ampicillin antibody was prone to nonspecific protein interactions. The strength of interaction was different for specific binding and nonspecific binding. These results provide a platform for detecting the probability of nonspecific interactions and for improving methods of biosensor detection construction with reduced nonspecific adsorption.  相似文献   

2.
A lateral flow biosensor based on an immuno-chromatographic assay has been developed for the detection of DNA-binding proteins. The biosensor is composed of four parts: a sample pad, a conjugate pad, a strip of nitrocellulose membrane and an absorbent pad. A DNA probe containing a specific protein binding consensus sequence is coated onto gold nanoparticles, while an antibody against the DNA-binding protein is immobilized onto a test zone of the nitrocellulose membrane. The target protein binds to the protein binding DNA sequence that is coated on the gold nanoparticles to form nanoparticle-DNA-protein complexes, and the complexes are then captured by the antibody immobilized on the test zone to form a red line for visual detection of the target protein. This biosensor was successfully applied to a DNA-binding protein, c-jun, and the developed biosensor allows for the rapid detection of down to 0.2 footprint unit of c-jun protein within 10 min. This biosensor was verified using HeLa cells and it visually detected c-jun activity in 100 μg of crude cell lysate protein. The antibody against c-jun used in the biosensor can distinguish c-jun from other nonspecific proteins, with high specificity.  相似文献   

3.
BACKGROUND: The kinetics of protein-protein interactions can be monitored with optical biosensors based on the principles of either surface plasmon resonance or mirror resonance. These methods are straightforward for soluble proteins, but not for proteins inserted in the plasma membrane. METHODS: We monitored with an IASys biosensor system, based on a resonant mirror: (1) the binding of cells to an immobilized ligand, (2) the binding of a soluble ligand to immobilized cells, and (3) the binding of a soluble ligand to immobilized plasma membrane vesicles. For comparison, the kinetics of fluorescent antibody binding to intact cells were measured by dynamic flow cytometry. RESULTS: With an optical biosensor, the useful configuration is the one based on immobilized plasma membrane vesicles. However, signals can be detected only for very abundant binding sites (>10(6) per cell). Dynamic flow cytometry allows the accurate determination of the k(on) and k(off) of antibody binding. The sensitivity of the method is two orders of magnitude better than with an optical biosensor. CONCLUSIONS: Although biosensors constitute a method of choice for measuring the interactions between soluble proteins, they are not well suited for measuring the interaction between soluble proteins and membrane-embedded proteins. On the contrary, flow cytometry is well suited for such an application, when it is used in a dynamic mode.  相似文献   

4.
The large number of estrogen receptor (ER) binding sites of various sequence patterns requires a sensitive detection to differentiate between subtle differences in ER-DNA binding affinities. A self-assembled monolayer (SAM)-assisted silicon nanowire (SiNW) biosensor for specific and highly sensitive detection of protein-DNA interactions, remarkably in nuclear extracts prepared from breast cancer cells, is presented. As a typical model, estrogen receptor element (ERE, dsDNA) and estrogen receptor alpha (ERα, protein) binding was adopted in the work. The SiNW surface was coated with a vinyl-terminated SAM, and the termination of the surface was changed to carboxylic acid via oxidation. DNA modified with amine group was subsequently immobilized on the SiNW surface. Protein-DNA binding was finally investigated by the functionalized SiNW biosensor. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were employed to characterize the stepwise functionalization of the SAM and DNA on bare silicon surface, and to visualize protein-DNA binding on the SiNW surface, respectively. We observed that ERα had high sequence specificity to the SiNW biosensor which was functionalized with three different EREs including wild-type, mutant and scrambled DNA sequences. We also demonstrate that the specific DNA-functionalized SiNW biosensor was capable of detecting ERα as low as 10 fM. Impressively, the developed SiNW biosensor was able to detect ERα-DNA interactions in nuclear extracts from breast cancer cells. The SAM-assisted SiNW biosensor, as a label-free and highly sensitive tool, shows a potential in studying protein-DNA interactions.  相似文献   

5.
Genetically engineered periplasmic glucose receptors as biomolecular recognition elements on gold nanoparticles (AuNPs) have allowed our laboratory to develop a sensitive and reagentless electrochemical glucose biosensor. The receptors were immobilized on AuNPs by a direct sulfur-gold bond through a cysteine residue that was engineered in position 1 on the protein sequence. The study of the attachment of genetically engineered and wild-type proteins binding to the AuNPs was first carried out in colloidal gold solutions. These constructs were studied and characterized by UV-Vis spectroscopy, transmission electron microscopy, particle size distribution, and zeta potential. We show that the genetically engineered cysteine is important for the immobilization of the protein to the AuNPs. Fabrication of the novel electrochemical biosensor for the detection of glucose used these receptor-coated AuNPs. The sensor showed selective detection of glucose in the micromolar concentration range, with a detection limit of 0.18 microM.  相似文献   

6.
The growth factor receptor-binding protein 2-Src homology 2 (Grb2-SH2) domain plays an important role in the oncogenic Ras signal transduction pathway, therefore, peptidic inhibitors of the Grb2-SH2 domain has been chosen as our target for the development of antiproliferative agents. The inhibitory effects of peptide analogs on the Grb2-SH2 domain have been determined by using surface plasmon resonance (SPR) technology developed with the BIACORE biosensor. Recently, we reported the analysis of interactions between peptides and the GST-Grb2-SH2 that was immobilized on the surface of sensor chip by using BIACORE biosensor (the protein-immobilized method). Herein, we analyze interactions of peptides with the GST-Grb2-SH2 that was captured by the anti-GST antibodies immobilized on the surface of sensor chip (the protein-captured method). Results obtained by both methods are in good correlation, indicating the immobilization of GST-Grb2-SH2 on the sensor chip did not significantly affect the binding of Grb2-SH2 with peptides. Both SPR-based assays are very sensitive bioanalytical methods and can be applied in screening inhibitors of target proteins or purifying GST-fusion proteins, however, considering the efficiency and the cost, the GST-Grb2-SH2-immobilized method is suggested for routinely determining the binding potency of inhibitors of Grb2-SH2.  相似文献   

7.
Surface plasmon resonance biosensor analysis was used to evaluate the thermodynamics and binding kinetics of naturally occurring and synthetic cobalamins interacting with vitamin B(12) binding proteins. Cyanocobalamin-b-(5-aminopentylamide) was immobilized on a biosensor chip surface to determine the affinity of different cobalamins for transcobalamin, intrinsic factor, and nonintrinsic factor. A solution competition binding assay, in which a surface immobilized cobalamin analog competes with analyte cobalamin for B(12) protein binding, shows that only recombinant human transcobalamin is sensitive to modification of the corrin ring b-propionamide of cyanocobalamin. A direct binding assay, where recombinant human transcobalamin is conjugated to a biosensor chip, allows kinetic analysis of cobalamin binding. Response data for cyanocobalamin binding to the transcobalamin protein surface were globally fitted to a bimolecular interaction model that includes a term for mass transport. This model yields association and dissociation rate constants of k(a) = 3 x 10(7) M(-1) s(-1) and k(d) = 6 x 10(-4) s(-1), respectively, with an overall dissociation constant of K(D) = 20 pM at 30 degrees C. Transcobalamin binds cyanocobalamin-b-(5-aminopentylamide) with association and dissociation rates that are twofold slower and threefold faster, respectively, than transcobalamin binding to cyanocobalamin. The affinities determined for protein-ligand interaction, using the solution competition and direct binding assays, are comparable, demonstrating that surface plasmon resonance provides a versatile way to study the molecular recognition properties of vitamin B(12) binding proteins.  相似文献   

8.
Protein profiling and characterization of protein interactions in biological samples ultimately require indicator-free methods of signal detection, which likewise offer an opportunity to distinguish specific interactions from nonspecific protein binding. Here we describe a new 3-dimensional protein microchip for detecting biomolecular interactions with matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS); the microchip comprises a high-density array of methacrylate polymer elements containing immobilized proteins as capture molecules and directly interfaces with a commercially available mass spectrometer. We demonstrated the performance of the chip in three types of experiments by detecting antibody-antigen interactions, enzymatic activity, and enzyme-inhibitor interactions. MALDI-MS biochip-based tumor necrosisfactor alpha (TNF-alpha) immunoassays demonstrated the feasibility of detecting antigens in complex biological samples by identifying molecular masses of bound proteins even at high nonspecific protein binding. By detecting model interactions of trypsin with trypsin inhibitors, we showed that the protein binding capacity of methacrylate polymer elements and the sensitivity of MALDI-MS detection of proteins bound to these elements surpassed that of other 2- and 3-dimensional substrates tested Immobilized trypsin retained functional (enzymatic) activity within the protein microchip and the specificity of macromolecular interactions even in complex biological samples. We believe that the underlying technology should therefore be extensible to whole-proteome protein expression profiling and interaction mapping.  相似文献   

9.
Protein ubiquitination is an important mechanism responsible not only for specific labeling of proteins for their subsequent degradation; it also determines localization of proteins in the cell and regulation of protein-protein interactions. In the context of protein-protein interactions binding of (mono/poly)ubiquitinated molecules to proteins containing specific ubiquitin binding domains plays the decisive role. Formation of the ubiquitin interactome has been demonstrated for cytosol. Involvement of mitochondria and associated extramitochondrial proteins into such interactions still requires detailed investigation. In this study using an optical biosensor we have demonstrated binding of proteins of mouse brain mitochondrial lysates to immobilized monomeric ubiquitin. Model purified proteins, which are known to be associated with the outer mitochondrial compartment (glyceraldehyde-3-phosphate dehydorgenase, creatine phosphokinase), interacted with immobilized ubiquitin as well as with each other. This suggests that (poly)ubiquitinated chains may be involved in protein-protein interactions between ubiquitinated and non-ubiquitinated proteins and thus may contribute to formation of (mitochondrial) ubiquitin subinteractome.  相似文献   

10.
Natsume T  Taoka M  Manki H  Kume S  Isobe T  Mikoshiba K 《Proteomics》2002,2(9):1247-1253
We describe a rapid analysis of interactions between antibodies and a recombinant protein present in total cell lysates. Using a surface plasmon resonance biosensor, a low concentration of glutathione-S-transferase (GST) fused protein expressed in small scale Esherichia coli culture was purified on an anti-GST antibody immobilized sensor chip. The 'on-chip purification' was verified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry by measuring the molecular masses of recombinant proteins purified on the sensor chip. The specific binding of monoclonal antibodies for the on-chip micropurified recombinant proteins can then be monitored, thus enabling kinetic analysis and epitope mapping of the bound antibodies. This approach reduced time, resources and sample consumption by avoiding conventional steps related to concentration and purification.  相似文献   

11.
Jung JW  Jung SH  Kim HS  Yuk JS  Park JB  Kim YM  Han JA  Kim PH  Ha KS 《Proteomics》2006,6(4):1110-1120
We modified gold arrays with a glutathione (GSH) surface, and investigated high-throughput protein interactions with a spectral surface plasmon resonance (SPR) biosensor. We fabricated the GSH exterior on gold surfaces by successive modification with aminoethanethiol, 4-maleimidobutyric acid N-hydroxysuccinimide ester and GSH. We immobilized GST-Rac1, GST-RhoA, the GST-Rho-binding domain of rhotekin and the GST-p21-binding domain of PAK1 onto the GSH surface, and observed specific antigen-antibody interactions on the GST-fusion protein arrays. We determined the expression of GST-fusion proteins in Escherichia coli on the GSH surface with the SPR biosensor. We then analyzed the interactions of tissue transglutaminase (tTGase), a Ca2+-dependent enzyme, with RhoA and Rac1 on the GST-fusion protein arrays with the SPR biosensor. We found that tTGase interacted with RhoA and Rac1 in a Ca2+-dependent manner, indicating that the interactions were dependent on tTGase activity. In addition, transamidation of Rac1 by tTGase was dependent on Ca2+ concentration. We obtained similar results with GST pull-down assays. Thus, protein arrays prepared on the GSH surface provide a useful system for the high-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions with the spectral SPR biosensors.  相似文献   

12.
Development of biosensor devices typically requires incorporation of the molecular recognition element into a solid surface for interfacing with a signal detector. One approach is to immobilize the signal transducing protein directly on a solid surface. Here we compare the effects of two direct immobilization methods on ligand binding, kinetics, and signal transduction of reagentless fluorescent biosensors based on engineered periplasmic binding proteins. We used thermostable ribose and glucose binding proteins cloned from Thermoanaerobacter tengcongensis and Thermotoga maritima, respectively. To test the behavior of these proteins in semispecifically oriented layers, we covalently modified lysine residues with biotin or sulfhydryl functions, and attached the conjugates to plastic surfaces derivatized with streptavidin or maleimide, respectively. The immobilized proteins retained ligand binding and signal transduction but with adversely affected affinities and signal amplitudes for the thiolated, but not the biotinylated, proteins. We also immobilized these proteins in a more specifically oriented layer to maleimide-derivatized plates using a His(2)Cys(2) zinc finger domain fused at either their N or C termini. Proteins immobilized this way either retained, or displayed enhanced, ligand affinity and signal amplitude. In all cases tested ligand binding by immobilized proteins is reversible, as demonstrated by several iterations of ligand loading and elution. The kinetics of ligand exchange with the immobilized proteins are on the order of seconds.  相似文献   

13.
Dietary proteins are recognized by the gastrointestinal tract to display physiological functions, however, the sensory mechanism of the intestinal mucosa is not known. We examined binding properties between the rat small intestinal brush-border membrane (BBM) and proteins by using a surface plasmon resonance biosensor. BBM and solubilized BBM prepared from the rat jejunum bound to casein immobilized on the sensor surface, but not to bovine serum albumin. The ileal BBM showed less binding to casein than the jejunal BBM. Solubilized BBM binding to immobilized alpha-casein was slightly inhibited by aminopeptidase inhibitors, but still more inhibited by addition of casein with the inhibitors. Guanidinated casein inhibited the solubilized BBM binding to alpha-casein more strongly than casein (casein sodium and alpha-casein) inhibited. Trypsinization of solubilized BBM abolished its binding activity to alpha-casein. These results indicate that some membrane protein, but not aminopeptidases, contained in BBM interacts with dietary proteins, and that guanidinated casein has a higher affinity for BBM than intact casein. These binding intensities for proteins were closely correlated to physiological responsiveness, and are possibly involved in a sensory system for dietary protein in the intestine.  相似文献   

14.
Based on solid-phase binding assays with enzyme-linked immunosorbent assay detection, previous investigators suggested that intracellular carbonic anhydrase II (CA II) interacts at high affinity with the C-terminal (Ct) domains of SLC4 bicarbonate-transport proteins, expressed as glutathione S-transferase (GST) fusion proteins, to form functional HCO3- metabolons. Here we re-evaluated this protein-protein interaction using two solid-phase binding assays. We first compared the ability of the Ct domain of three SLC4 transporters, SLC4-A1 (AE1), SLC4-A4 (NBCe1), and SLC4-A8 (NDCBE), to bind immobilized CA II, using enzyme-linked immunosorbent assay detection. We found that when expressed as GST fusion proteins, all three bind to CA II (Kd 300-600 nM) better than does pure GST. However, we detected no binding of pure SLC4-Ct peptides to immobilized CA II. Second, we reversed assay orientation by immobilizing the SLC4-Ct fusion proteins or peptides. We found that more CA II binds to GST than to any of the three GST-SLC4-Ct fusion proteins. Furthermore, we detected no binding of CA II to any of the immobilized pure SLC4-Ct peptides. Finally, we used surface plasmon resonance to detect possible rapid interactions between CA II and the pure peptides. Although we detected acetazolamide binding to immobilized CA II and specific antibodies binding to immobilized SLC4-Ct peptides, we detected no binding of CA II to immobilized SLC4-Ct or vice versa. Thus, although an HCO3 metabolon may exist, CA II cannot bind directly to pure SLC4-Ct peptides and can bind to GST-SLC4-Ct fusion proteins only when the CA II is immobilized and the fusion protein is soluble, and not vice versa.  相似文献   

15.
There is increasing evidence that proteins function in the cell as integrated stable or temporally formed protein complexes, interactomes. Previously, using model systems we demonstrated applicability of direct molecular fishing on paramagnetic particles for protein interactomics (Ershov et al. Proteomics, 2012, 12, 3295). In the present study, we have used a combination of affinity‐based molecular fishing and subsequent MS for investigation of human liver proteins involved in interactions with immobilized microsomal cytochrome b5 (CYB5A), and also transthyretin and BSA as alternative affinity ligands (baits). The LC?MS/MS identification of prey proteins fished on these baits revealed three sets of proteins: 98, 120, and 220, respectively. Comparison analysis of these sets revealed only three proteins common for all the baits. In the case of paired analysis, the number of common proteins varied from 2 to 9. The binding capacity of some identified proteins has been validated by a SPR‐based biosensor. All the investigated proteins effectively interacted with the immobilized CYB5A (Kd values ranged from 0.07 to 1.1 μM). Results of this study suggest that direct molecular fishing is applicable for analysis of protein–protein interactions (PPI) under normal and pathological conditions, in which altered PPIs are especially important.  相似文献   

16.
A surface modification strategy for the use of giant magnetoresistive materials in the detection of protein-protein interactions is developed. This modification strategy is based on silanization of semiconductive materials. A native silicon nitride surface was treated with concentrated hydrofluoric acid to improve surface homogeneity. Nano-strip was used to oxidize silicon nitride to form a hydrophilic layer. Aminopropyltriethoxysilane was subsequently used to functionalize the treated surfaces to form amine groups, which were further activated with glutaraldehyde to introduce a layer of aldehyde groups. The effectiveness of this modification strategy was validated by chemiluminescence immunoassays of purified 6x His-HrpW of Pseudomonas syringae pv. tomato DC3000 and human transferrin. Signals with intensities related to concentrations of these two immobilized model proteins were observed. The modified surface was also validated by a more complex system: intercellular proteins secreted by DC3000. HrpW in these protein mixtures was successfully recognized by anti-HrpW antibodies when mixed proteins were immobilized onto activated surfaces. This surface modification strategy provides a platform onto which proteins can be directly immobilized for biosensor and protein array applications.  相似文献   

17.
18.
Hydrophobic interactions between nine model proteins and net-neutral lipid bilayer membranes (liposomes) under stress conditions were quantitatively examined by using immobilized liposome chromatography (ILC). Small or large unilamellar liposomes were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and immobilized in a gel matrix by utilizing covalent coupling between amino-containing lipids and activated gel beads or avidin–biotin biospecific binding. Retardation of bovine carbonic anhydrase (CAB) in ILC was pronounced at particular temperatures (50 and 60 °C) where the local hydrophobicity of theses protein molecules becomes sufficiently large. Protein-induced leakage of a hydrophilic dye (calcein) from immobilized liposomes interior was also drastically enhanced at particular temperatures where large retardation was observed. For other proteins examined, similar results were also observed. The specific capacity factor of the proteins characteristic for the ILC and the amount of calcein released from immobilized liposomes were successfully expressed as a function of the product of the local hydrophobicities of proteins and liposomes, regardless of protein species and the type of the stress conditions applied (denaturant and heating). These findings indicate that lipid membranes have an ability to non-specifically recognize local hydrophobicities of proteins to form stress-mediated supramolecular assemblies with proteins, which may have potential applications in bioprocesses such as protein refolding and separation. ILC was thus found to be a very useful method for the quantitative detection of dynamic protein–liposome interactions triggered by stress conditions.  相似文献   

19.
Development of immunobiosensor detector surfaces involves the immobilization of active antibodies on the capture surface without any significant loss of antigen binding activity. An atomic force microscope (AFM) was used to directly evaluate specific interactions between pesticides and antibodies on a biosensor surface. Oriented immobilization of antibodies against two herbicide molecules 2,4-dichlorophenoxyacetic acid (2,4-D) and atrazine, on gold, was carried out to create the active immunobiosensor surfaces. The adhesive forces between immobilized antibodies and their respective antigens were measured by force spectroscopy using hapten-carrier protein functionalized AFM cantilevers. Relative functional affinity (avidity) measurements of the antibodies carried out prior to immobilization, well correlated with subsequent AFM force measurement observations. Analysis showed that immobilization had not compromised the reactivity of the surface immobilized antibody molecules for antigen nor was there any change in their relative quality with respect to each other. The utility of the immunoreactive surface was further confirmed using a Surface Plasmon Resonance (SPR) based detection system. Our study indicates that AFM can be utilized as a convenient immunobiosensing tool for confirming the presence and also assessing the strength of antibody-hapten interactions on biosensor surfaces under development.  相似文献   

20.
We present the electrical detection of immunoglobulin G (IgGs) from human serum using a nanogap-based biosensor. The detection method is based on the capture of IgGs by a probe immobilized between gold nanoelectrodes of 30-90nm spacing. The captured IgGs are further reacted with secondary antibodies labelled with gold nanoparticles (GNPs). Insertion of GNPs into the nanogap resulted in increasing the conductance through the nanogap. The use of a chip with 90 nanogaps enabled the calculation of a quality factor for the detection which, coupled with a non-linear regression analysis of the data, easily discriminated specific and differential capture of human antibodies by arrayed probes. We obtained a 500-fold higher quality factor with protein A compared to goat anti-murine antibodies. This method can be applied, through these proof-of-concept experiments, to the detection of protein-protein interactions in biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号