首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the pressure on the structure and stability of the D-Galactose/D-Glucose binding protein (GGBP) from Escherichia coli was studied by steady-state and time-resolved fluorescence spectroscopy, and the ability of glucose ligand to stabilize the GGBP structure was also investigated. Steady-state fluorescence experiments showed a marked quenching of fluorescence emission of GGBP in the absence of glucose. Instead, the presence of glucose seems to stabilize the structure of GGBP at low and moderate pressure values. Time-resolved fluorescence measurements showed that the GGBP taumean in the absence of glucose varies significantly up to 600 bar, while in the presence of the ligand it is almost unaffected by pressure increase up to 600 bar. The effect of the pressure on GGBP was also studied by molecular dynamics simulations. The simulation data support the spectroscopic results and confirm that the presence of glucose is able to contrast the negative effects of pressure on the protein structure. Taken together, the spectroscopic and computer simulation studies suggest that at pressure values up to 2000 bar the structure of GGBP in the absence of glucose remains folded, but a significant perturbation of the protein secondary structures can be detected. The binding of glucose reduces the negative effect of pressure on protein structure and confers protection from perturbation especially at moderate pressure values.  相似文献   

2.
The effect of the pressure on the structure and stability of the D-galactose/D-glucose binding protein from Escherichia coli in the absence (GGBP) and in the presence (GGBP/Glc) of glucose was studied by Fourier transform infrared (FT-IR) spectroscopy and molecular dynamic (MD) simulations. FT-IR spectroscopy experiments showed that the protein beta-structures are more resistant than alpha-helices structures to pressure value increases. In addition, the infrared data indicated that the binding of glucose stabilizes the protein structure against high pressure values, and the protein structure does not completely unfold up to pressure values close to 9000 bar. MD simulations allow a prediction of the most probable configuration of the protein, consistent with the increasing pressures on the two systems. The detailed analysis of the structures at molecular level confirms that, among secondary structures, alpha-helices are more sensitive than beta-structures to the destabilizing effect of high pressure and that glucose is able to preserve the structure of the protein in the complex. Moreover, the evidence of the different resistance of the two domains of this protein to high pressure is investigated and explained at a molecular level, indicating the importance of aromatic amino acid in protein stabilization.  相似文献   

3.
Periplasmic expression screening is a selection technique used to enrich high-affinity proteins in Escherichia coli. We report using this screening method to rapidly select a mutated D-glucose/D-galactose-binding protein (GGBP) having low affinity to glucose. Wild-type GGBP has an equilibrium dissociation constant of 0.2 microM and mediates the transport of glucose within the periplasm of E. coli. The protein undergoes a large conformational change on binding glucose and, when labeled with an environmentally sensitive fluorophore, GGBP can relay glucose concentrations, making it of potential interest as a biosensor for diabetics. This use necessitates altering the glucose affinity of GGBP, bringing it into the physiologically relevant range for monitoring glucose in humans (1.7-33 mM). To accomplish this a focused library was constructed using structure-based site-saturation mutagenesis to randomize amino acids in the binding pocket of GGBP at or near direct H-bonding sites and screening the library within the bacterial periplasm. After selection, equilibrium dissociation constants were confirmed by glucose titration and fluorescence monitoring of purified mutants labeled site-specifically at E149C with the fluorophore IANBD (N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylene-diamine). The screening identified a single mutation A213R that lowers GGBP glucose affinity 5000-fold to 1 mM. Computational modeling suggested the large decrease in affinity was accomplished by the arginine side chain perturbing H-bonding and increasing the entropic barrier to the closed conformation. Overall, these experiments demonstrate the ability of structure-based site-saturation mutagenesis and periplasmic expression screening to discover low-affinity GGBP mutants having potential utility for measuring glucose in humans.  相似文献   

4.
The effect of the depletion of calcium on the structure and thermal stability of the D-galactose/D-glucose-binding protein (GGBP) from Escherichia coli was studied by fluorescence spectroscopy and Fourier-transform infrared spectroscopy. The calcium-depleted protein (GGBP-Ca) was also studied in the presence of glucose (GGBP-Ca/Glc). The results show that calcium depletion has a small effect on the secondary structure of GGBP, and, in particular it affects a population of alpha-helices with a low exposure to solvent. Alternatively, glucose-binding to GGBP-Ca eliminates the effect induced by calcium depletion by restoring a secondary structure similar to that of the native protein. In addition, the infrared and fluorescence data obtained reveal that calcium depletion markedly reduces the thermal stability of GGBP. In particular, the spectroscopic experiments show that the depletion of calcium mainly affects the stability of the C-terminal domain of the protein. However, the binding of glucose restores the thermal stability of GGBP-Ca. The thermostability of GGBP and GGBP-Ca was also studied by molecular dynamics simulations. The simulation data support the spectroscopic results. New insights into the role of calcium in the thermal stability of GGBP contribute to a better understanding of the protein function and constitute important information for the development of biotechnological applications of this protein. Mutations and/or labelling of amino acid residues located in the protein C-terminal domain may affect the stability of the whole protein structure.  相似文献   

5.
The primary sequence of the receptor for L-arabinose or Ara-binding protein (ABP) composed of 306 residues is very different from the D-glucose/D-galactose-binding protein (GGBP) which consists of 309 residues. Nevertheless, superimpositioning of the well-refined high resolution structures of ABP in complex with D-galactose and the GGBP in complex with D-glucose shows very similar structures; 220 of the residues (or about 70%) have a root mean square deviation of 2.0 A. From the superpositioning, nine pairs of continuous segments (consisting of 8-51 residues), mainly alpha-helices and beta-strands that form the core of the two lobes of the bilobate proteins were found to exhibit strong sequence homology. The equivalenced structures and aligned sequences show that many of the polar, as well as aromatic residues, in the sugar-binding sites located in the cleft between the two lobes are highly conserved. Surprisingly, however, the exact mode of binding of the D-galactose in ABP is totally different from that of the D-glucose in GGBP. Using the structurally aligned sequences of the ABP and GGBP as a template, we have matched the sequence of the ribose-binding protein (RBP) which consists of 271 residues with the ABP/GGBP pair. Although the nine aligned segments of all three proteins show little sequence identity, they have significant homology. Four additional segments of RBP were matched only with GGBP, leading to the alignment of about 90% of the RBP sequence with the GGBP sequence. Many of the conserved residues in the binding sites of ABP and GGBP matched with similar residues in RBP. Additional observations indicate that the GGBP/RBP pair is more closely related than the ABP/RBP or ABP/GGBP pair. All three binding proteins, which may have diverged from a common ancestor, serve as primary receptors for bacterial high affinity active transport systems. Moreover, GGBP and RBP, but not ABP, also act as receptors for chemotaxis. An exposed site located in one domain, which includes Gly74, for interacting with the trg transmembrane signal transducer that is involved in triggering chemotaxis has been located in the structure of GGBP (Vyas, N.K., Vyas, M.N., and Quiocho, F.A. (1988) Science 242, 1290-1295). Whereas the site is absent in the structure of ABP, it is strongly predicted to be present in RBP which shares the same trg transducer with GGBP. The knowledge-based alignment of RBP further revealed two possible additional peripheral chemotactic sites that show high structural and sequence similarity between GGBP and RBP only. At least one of these sites, together with the one proven to exist in the other domain, could be used by the signal transducer with which both binding proteins interact in a way which the substrate-loaded "closed cleft" structure could be discriminated from the unliganded "open cleft" form by the transducer.  相似文献   

6.
In this work we studied the structure and stability of sugar-binding proteins from mesophilic and thermophilic organisms which are of great importance for their possible use as sensing probe of biosensors aimed to glucose detection in the blood. The data obtained revealed the stabilizing effect of ligands on the structures of D-galactose/D-glucose-binding protein (GGBP) from Escherichia coli and trehalose/maltose-binding protein from thermophilic bacterium Thermococcus litoralis. It was found that TMBP possess an increased stability as its structure remains native even under heating up to 95 degrees C.  相似文献   

7.
A novel glucose-sensing molecule was created based on galactose/glucose-binding protein (GGBP). GGBP mutants at Asp14, a residue interacting with the 4th hydroxyl group of the sugar molecule, were constructed by mutagenesis to improve the ligand specificity of GGBP. The autofluorescence-based analysis of the binding abilities of these engineered GGBPs showed that the GGBP mutants Asp14Asn and Asp14Glu bound only to glucose in a concentration-dependent manner, without being affected by the presence of galactose. The Phe16Ala mutation, which leads to an increase in the K (d) value toward glucose, was then introduced into these two glucose-specific mutant GGBPs. One of the constructed GGBP double-mutants, Asp14Glu/Phe16Ala, had a glucose specificity with a K(d) value of 3.9 mM, which makes it suitable for use in the measurement of the physiological glucose concentration. Our results demonstrate that it is possible to construct a GGBP which specifically recognizes glucose and has a higher K(d) value and use it as a molecular recognition element of blood glucose monitoring systems by combining two different mutations based on the 3D structure of GGBP.  相似文献   

8.
Protein free energy landscapes remodeled by ligand binding   总被引:1,自引:0,他引:1       下载免费PDF全文
Glucose/galactose binding protein (GGBP) functions in two different larger systems of proteins used by enteric bacteria for molecular recognition and signaling. Here we report on the thermodynamics of conformational equilibrium distributions of GGBP. Three fluorescence components appear at zero glucose concentration and systematically transition to three components at high glucose concentration. Fluorescence anisotropy correlations, fluorescent lifetimes, thermodynamics, computational structure minimization, and literature work were used to assign the three components as open, closed, and twisted conformations of the protein. The existence of three states at all glucose concentrations indicates that the protein continuously fluctuates about its conformational state space via thermally driven state transitions; glucose biases the populations by reorganizing the free energy profile. These results and their implications are discussed in terms of the two types of specific and nonspecific interactions GGBP has with cytoplasmic membrane proteins.  相似文献   

9.
The D-galactose/D-glucose-binding protein (GGBP) from E. coli serves as an initial component for both chemotaxis toward glucose and high-affinity active transport of the sugar. In this work, we have used phosphorescence spectroscopy to investigate the effects of glucose and calcium on the dynamics and stability of GGBP. We found that GGBP exhibits a phosphorescence spectrum composed of two energetically distinct 0,0-vibrational bands centered at 404.43 and 409.61 nm; the large energy separation between them indicates two classes of chromophores making distinct dipolar interactions with their surrounding. Interestingly, the high-energy spectral component (404.43 nm) is one of the bluest spectra reported to date in proteins. Considering the ground state dipole direction, low-energy configurations for the indole side chain in proteins leading to blue-shifted spectra can arise from negative charges in proximity to the imidazole-ring nitrogen and/or positive charges near C4-C5 of the benzene ring. Among the five tryptophan residues of GGBP, Trp-284, located at the N-terminal domain of the protein, and Trp-183, located in the protein hinge region, make strong attractive charge interactions with surrounding side chains. Regarding Trp-284, the indole ring nitrogen is in contact with the negative charge of the Asp-267, whereas Trp-183 is next to the Glu-149 residue. In the latter, the ground state energy is further lowered by the proximity of the Arg-158 to the negative end (near C6) of the indole dipole. Regarding the red spectral component (409.61 nm), it is more intense than the blue component, presumably because more residues contribute to it. lambda 0,0 is typical of environments that are weakly polar or characterized by charges positioned near 90 degrees from the ground state dipole direction (the case of W195 and W127). The binding of glucose modifies the phosphorescence lifetime values as well as the spectrum of GGBP, shifting the blue band 0.54 nm to the blue and the red band 1 nm to the red. Finally, the removal of the calcium from GGBP structure causes variations in lifetime values and spectral shifts similar to those induced by glucose binding to the native protein. Aided by a detailed inspection of the three-dimensional structure of GGBP, these results contribute to a better understanding of the structure/function relationship of this protein.  相似文献   

10.
11.
Fluorescent protein biosensors, which exhibit a significant change in fluorescence based on the physical interaction between protein and ligand, may prove to be effective tools to measure a variety of analytes. In particular, real-time monitoring of glucose levels has potential applications in bioprocess monitoring and in minimizing health complications caused by diabetes. In this work, site-directed mutagenesis of the Escherichia coli glucose/galactose binding protein (GGBP) was used to engineer double-cysteine mutations that allowed selective covalent attachment of thiol-reactive dyes. Because GGBP undergoes a large conformational change on the addition of glucose, rational placement of these sites allowed glucose-dependent spatial realignment of the two fluorophores, which was monitored as a change in fluorescence intensity and extinction coefficients. Using targeted mutagenesis of the GGBP binding pocket, glucose biosensors were created to measure concentrations spanning five orders of magnitude (0.04-12,000 microM). The glucose biosensor retained its function in complex solutions that contained realistic concentrations of protein and potential interfering agents found in blood serum. In addition to the development of a fluorescent protein sensor for glucose, this work helps to expand the spectroscopic tools used for the detection of conformational movements within a single polypeptide chain.  相似文献   

12.
The monitoring and management of blood glucose levels are key components for maintaining the health of people with diabetes. Traditionally, glucose monitoring has been based on indirect detection using electrochemistry and enzymes such as glucose oxidase or glucose dehydrogenase. Here, we demonstrate direct detection of glucose using a surface plasmon resonance (SPR) biosensor. By site-specifically and covalently attaching a known receptor for glucose, the glucose/galactose-binding protein (GGBP), to the SPR surface, we were able to detect glucose binding and determine equilibrium binding constants. The site-specific coupling was accomplished by mutation of single amino acids on GGBP to cysteine and subsequent thiol conjugation. The resulting SPR surfaces had glucose-specific binding properties consistent with known properties of GGBP. Further modifications were introduced to weaken GGBP-binding affinity to more closely match physiologically relevant glucose concentrations (1-30 mM). One protein with a response close to this glucose range was identified, the GGBP triple mutant E149C, A213S, L238S with an equilibrium dissociation constant of 0.5mM. These results suggest that biosensors for direct glucose detection based on SPR or similar refractive detection methods, if miniaturized, have the potential for development as continuous glucose monitoring devices.  相似文献   

13.
We have characterized stability and conformational dynamics of the calcium depleted D-galactose/D-glucose-binding protein (GGBP) from Escherichia coli. The structural stability of the protein was investigated by steady state and time resolved fluorescence, and far-UV circular dichroism in the temperature range from 20 degrees C to 70 degrees C. We have found that the absence of the Ca(2+) ion results in a significant destabilization of the C-terminal domain of the protein. In particular, the melting temperature decreases by about 10 degrees C with the simultaneous loss of the melting cooperativity. Time resolved fluorescence quenching revealed significant loosening of the protein when highly shielded Trp residue(s) became accessible to acrylamide at higher temperatures. We have documented a significant stabilizing effect of glucose that mostly reverts the effect of calcium, that is, the thermal stability of the protein increases by about 10 degrees C and the melting cooperativity is restored. Moreover, the protein structure remains compact with low amplitude of the segmental mobility up to high temperatures. We have used molecular dynamics to identify the structural feature responsible for changes in the temperature stability. Disintegration of the Ca(2+)-binding loop seems to be responsible for the loss of the stability in the absence of calcium. The new insights on the structural properties and temperature stability of the calcium depleted GGBP contribute to better understanding of the protein function and constitute important information for the development of new biotechnological applications of this class of proteins.  相似文献   

14.
The effect of temperature and glucose binding on the structure of the galactose/glucose-binding protein from Escherichia coli was investigated by circular dichroism, Fourier transform infrared spectroscopy, and steady-state and time-resolved fluorescence. The data showed that the glucose binding induces a moderate change of the secondary structure content of the protein and increases the protein thermal stability. The infrared spectroscopy data showed that some protein stretches, involved in alpha-helices and beta strand conformations, are particularly sensitive to temperature. The fluorescence studies showed that the intrinsic tryptophanyl fluorescence of the protein is well represented by a three-exponential model and that in the presence of glucose the protein adopts a structure less accessible to the solvent. The new insights on the structural properties of the galactose/glucose-binding protein can contribute to a better understanding of the protein functions and represent fundamental information for the development of biotechnological applications of the protein.  相似文献   

15.
Cytochalasin B was found to bind to at least two distinct sites in human placental microvillous plasma membrane vesicles, one of which is likely to be intimately associated with the glucose transporter. These sites were distinguished by the specificity of agents able to displace bound cytochalasin B. [3H]Cytochalasin B was displaceable at one site by D-glucose but not by dihydrocytochalasin B; it was displaceable from the other by dihydrocytochalasin B but not by D-glucose. Some binding which could not be displaced by D-glucose + cytochalasin B binding site. Cytochalasin B can be photoincorporated into specific binding proteins by ultraviolet irradiation. D-Glucose specifically prevented such photoaffinity labeling of a microvillous protein component(s) of Mr = 60,000 +/- 2000 as determined by urea-sodium dodecyl sulfate acrylamide gel electrophoresis. This D-glucose-sensitive cytochalasin B binding site of the placenta is likely to be either the glucose transporter or be intimately associated with it. The molecular weight of the placental glucose transporter agrees well with the most widely accepted molecular weight for the human erythrocyte glucose transporter. Dihydrocytochalasin B prevented the photoincorporation of [3H]cytochalasin B into a polypeptide(s) of Mr = 53,000 +/- 2000. This component is probably not associated with placental glucose transport. This report presents the first identification of a sodium-independent glucose transporter from a normal human tissue other than the erythrocyte. It also presents the first molecular weight identification of a human glucose-insensitive high-affinity cytochalasin B binding protein.  相似文献   

16.
ATP regulation of the human red cell sugar transporter   总被引:4,自引:0,他引:4  
Purified human red blood cell sugar transport protein intrinsic tryptophan fluorescence is quenched by D-glucose and 4,6-ethylidene glucose (sugars that bind to the transport), phloretin and cytochalasin B (transport inhibitors), and ATP. Cytochalasin B-induced quenching is a simple saturable phenomenon with Kd app of 0.15 microM and maximum capacity of 0.85 cytochalasin B binding sites per transporter. Sugar-induced quenching consists of two saturable components characterized by low and high Kd app binding parameters. These binding sites appear to correspond to influx and efflux transport sites, respectively, and coexist within the transporter molecule. ATP-induced quenching is also a simple saturable process with Kd app of 50 microM. Indirect estimates suggest that the ratio of ATP-binding sites per transporter is 0.87:1. ATP reduces the low Kd app and increases the high Kd app for sugar-induced fluorescence quenching. This effect is half-maximal at 45 microM ATP. ATP produces a 4-fold reduction in Km and 2.4-fold reduction in Vmax for cytochalasin B-inhibitable D-glucose efflux from inside-out red cell membrane vesicles (IOVs). This effect on transport is half-maximal at 45 microM ATP. AMP, ADP, alpha, beta-methyleneadenosine 5'-triphosphate, and beta, gamma-methyleneadenosine 5'-triphosphate at 1 mM are without effect on efflux of D-glucose from IOVs. ATP modulation of Km for D-glucose efflux from IOVs is immediate in onset and recovery. ATP inhibition of Vmax for D-glucose exit is complete within 5-15 min and is only partly reversed following 30-min incubation in ATP-free medium. These findings suggest that the human red cell sugar transport protein contains a nucleotide-binding site(s) through which ATP modifies the catalytic properties of the transporter.  相似文献   

17.
The immunosuppressive and nephrotoxic agent cyclosporin binds to a renal polypeptide with an apparent molecular weight of 75,000 which has been identified as a component of the renal Na(+)-D-glucose cotransporter (Neeb, M., Kunz, U., and Koepsell, H. (1987) J. Biol. Chem. 262, 10718-10729). The same Mr 75,000 polypeptide was covalently labeled with the D-glucose analog 10-N-(bromoacetyl)amino-1-decyl-beta-D-glucopyranoside and with the cyclosporin analog N epsilon-(diazotrifluoroethyl)benzyl-D-Lys8- cyclosporin (CSDZ). CSDZ labeling was decreased when the brush-border membrane proteins were incubated with monoclonal antibodies against the Na(+)-D-glucose cotransporter. In the presence of 145 mM Na+, CSDZ labeling was decreased by D-glucose (1 microM, 1 mM, or 100 mM) and by phlorizin (100 or 500 microM). In the absence of Na+, CSDZ labeling was distinctly increased by 50 microM phlorizin and was slightly increased by 1 mM D-glucose, whereas CSDZ labeling was decreased by 50 microM phloretin and by 500 microM phlorizin. Furthermore, Na(+)-dependent high affinity phlorizin binding to the Na(+)-D-glucose cotransporter was competitively inhibited by cyclosporin A (Ki = 0.04 microM) while Na(+)-D-glucose cotransport was not influenced. The data suggest that a part of the cyclosporin binding domain on the Na(+)-D-glucose cotransporter is identical to the phloretin binding domain of the high affinity phlorizin binding site. While phloretin or the phloretin moiety of phlorizin may directly displace cyclosporin, interaction of D-glucose or of the D-glucose moiety of phlorizin with the transporter may alter the conformation of the cyclosporin binding site and this conformational change may be modulated by Na+.  相似文献   

18.
This study describes the biochemical characterization and subcellular distribution of glucose transporters from isolated rat brain cortical microvessels. The D-glucose inhibitable [3H]cytochalasin B binding assay was used to quantitate glucose transporter binding sites in plasma membranes, high-density microsomes and low-density microsomes prepared from basal and insulin-stimulated cells. Incubation with insulin for 30 min increased the number of glucose transporters in the high-density microsomes by around 33% but had no effect on the number of glucose transporters in the plasma membrane or low-density microsomes. Prolonged incubation with insulin (2 h), however, resulted in a small but significant redistribution of glucose transporters to the low-density microsomes. Preincubation of cells with cycloheximide blocked this insulin-induced increase in glucose transporter number, suggesting that this effect of insulin was due to the synthesis of new glucose transport proteins. Specific labeling of glucose transporters was achieved by photoincorporation of [3H]cytochalasin B. Labeled membranes from all fractions contained a single D-glucose inhibitable peak, migrating with a molecular size of 55 kDa on SDS-polyacrylamide gel electrophoresis. Isoelectric focusing of the 55 kDa protein revealed one major peak of D-glucose inhibitable radioactivity focusing at pH 6.0 in all fractions.  相似文献   

19.
We present a generic method for the site‐specific and differential labeling of multiple cysteine residues in one protein. Phenyl arsenic oxide has been employed as a protecting group of two closely spaced thiols, allowing first labeling of a single thiol. Subsequently, the protecting group is removed, making available a reactive dithiol site for labeling with a second probe. For proof‐of‐principle, single and triple Cys mutants of the sulphate binding protein of an ABC transporter were constructed. The closely spaced thiols were engineered on the basis of the crystal structure of the protein and placed in different types of secondary structure elements and at different spacing. We show that phenyl arsenic oxide is a good protecting group for thiols spaced 6.3–7.3 Å. Proteins were labeled with two different fluorescent labels and the labeling ratios were determined with UV‐Vis spectroscopy and MALDI‐Tof mass spectrometry. The average labeling efficiency was ~80% for the single thiol and 65–90% for the dithiol site.  相似文献   

20.
The initial step in transfer of glucose from mother to fetus is facilitated diffusion transport across the microvillous membrane of the placental syncytium (1). We have used 3H-cytochalasin B as a photoaffinity label to identify the transport protein involved. Two binding proteins were present, one of which is apparently the glucose transport protein and one of which is actin. The two were identified by competition labeling with D-glucose, and cytochalasin E. They were separated by selective extraction with dimethyl maleic anhydride. The glucose transport protein is apparently a single molecular species of 52,000 molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号