首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
H Mizukami  H Nordl?v  S L Lee  A I Scott 《Biochemistry》1979,18(17):3760-3763
Strictosidine synthetase, which catalyzes the condensation of tryptamine with secologanin to form strictosidine (isovincoside), was purified 740-fold to homogeneity from cultured cells of Catharanthus roseus in 10% yield. The specific activity is 5.85 nkat/mg. The molecular weight as estimated by gel filtration is 38,000. The isoelectric point is 4.6. Apparent Km values for tryptamine and secologanin are 0.83 and 0.46 mM, respectively. The enzyme shows a broad pH optimum between 5.0 and 7.5. The product of the enzymic reaction is exclusively strictosidine, while no trace of its epimer vincoside can be detected. Sulfhydryl inhibitors have no effect on the enzyme. End products in the biosynthetic pathway of indole alkaloids such as ajmalicine, vindoline, and catharanthine do not inhibit the activity of strictosidine synthetase.  相似文献   

2.
Summary Suspension-cultured cells of Catharanthus roseus (L.) G. Don were immobilized on glass fibre mats and cultivated in shake flasks. The highly-aggregated immobilized cells exhibited a slower growth rate and accumulated reduced levels of tryptamine and indole alkaloids, represented by catharanthine and ajmalicine, in comparison to cells in suspension. The increased total protein synthesis in immobilized cells suggests a diversion of the primary metabolic flux toward protein biosynthetic pathways and away from other growth processes. In vitro assays for the specific activity of tryptophan decarboxylase (TDC) and tryptophan synthase (TS) suggest that the decreased accumulation of tryptamine in immobilized cells was due to reduced tryptophan biosynthesis. The specific activity of TDC was similar in immobilized and suspension-cultured cells. However, the expression of TS activity in immobilized cells was reduced to less than 25% of the maximum level in suspension-cultured cells. The reduced availability of a free tryptophan pool in immobilized cells is consistent with the reduced TS activity. Reduced tryptamine accumulation, however, was not responsible for the decreased accumulation of indole alkaloids in immobilized cells. Indole alkaloid accumulation increased to a similar level in immobilized and suspension-cultured cells only after the addition of exogenous secolaganin to the culture medium. The addition of tryptophan resulted in increased accumulation of tryptamine, but had no effect on indole alkaloid levels. Reduced biosynthesis of secologanin, the monoterpenoid precursor to indole alkaloids, in immobilized cells is suggested. Immobilization does not appear to alter the activity of indole alkaloid biosynthetic enzymes in our system beyond, and including, strictosidine synthase. Offprint requests to: P. J. Facchini  相似文献   

3.
In contrast to previous reports that vincoside was the sole precursor for indole alkaloids in Vinca rosea, the 3α epimer strictosidine has been incorporated into tetrahydroalstonine, ajmalicine, catharanthine and vindoline; the anomalous 3β to 3α inversion is no longer required.  相似文献   

4.
Compact callus cluster (CCC) cultures established from Catharanthus roseus consist of cohesive callus aggregates displaying certain levels of cellular or tissue differentiation. CCC cultures synthesize about two-fold more indole alkaloids than normal dispersed-cell cultures. Our studies here show that additions of KCl, mannitol, and a variety of synthetic precursors and bioregulators to the CCC cultures markedly improved indole alkaloid production and release of these alkaloids into the medium. Treatment with 250 mM mannitol and 4 g/l KCl yielded 42.3 mg l(-1) and 33.6 mg l(-1)of ajmalicine, respectively; these amounts were about four-fold higher than the control. Succinic acid, tryptamine, and tryptophan feedings also significantly increased ajmalicine (41.5 mg l(-1), 36.9 mg l(-1), and 31.8 mg l(-1), respectively) and catharanthine (21.1 mg l(-1), 17.2 mg l(-1), and 18 mg l(-1), respectively) production by the CCC cultures, while geraniol feeding inhibited biomass and alkaloid accumulation. We also found that tetramethyl ammonium bromide could significantly improve ajmalicine production (49.3 mg l(-1)) and catharanthine production (18.3 mg l(-1)) in C. roseus CCC cultures. The mechanisms responsible for these treatment effects are discussed herein.  相似文献   

5.
Catharanthine and akuammicine, together with ajmalicine and strictosidine, were isolated from a culture strain of Catharanthus roseus suspension cells. The biosynthetic capability of the cultured cells to produce akuammicine, catharanthine and vindoline was confirmed by feeding experiments with dl-tryptophan-[3-14C] to yield the radioactive alkaloids.  相似文献   

6.
The effects of terpenoid precursor feeding and elicitation by a biotic elicitor on alkaloid production of Catharanthus roseus suspension cultures were studied. After addition of secologanin, loganin or loganic acid an increase in the accumulation of ajmalicine and strictosidine and a decrease of tryptamine level was observed in non-elicited cells. Elicitation increased tryptamine accumulation in non-fed cells but it did not further increase alkaloid accumulation in precursor-fed cells. A decrease of tryptamine level was also observed, despite the induction of the tryptamine pathway after elicitation. Feeding mevalonic acid did not increase alkaloid accumulation in any studied case.  相似文献   

7.
A proteomic approach is undertaken aiming at the identification of novel proteins involved in the alkaloid biosynthesis of Catharanthus roseus. The C. roseus cell suspension culture A11 accumulates the terpenoid indole alkaloids strictosidine, ajmalicine and vindolinine. Cells were grown for 21 days, and alkaloid accumulation was monitored during this period. After a rapid increase between day 3 and day 6, the alkaloid content reached a maximum on day 16. Systematic analysis of the proteome was performed by two-dimensional polyacrylamide gel electrophoresis. After day 3, the proteome started to change with an increasing number of protein spots. On day 13, the proteome changed back to roughly the same as at the start of the growth cycle. 88 protein spots were selected for identification by mass spectrometry (MALDI-MS/MS). Of these, 58 were identified, including two isoforms of strictosidine synthase (EC 4.3.3.2), which catalyzes the formation of strictosidine in the alkaloid biosynthesis; tryptophan synthase (EC 4.1.1.28), which is needed for the supply of the alkaloid precursor tryptamine; 12-oxophytodienoate reductase, which is indirectly involved in the alkaloid biosynthesis as it catalyzes the last step in the biosynthesis of the regulator jasmonic acid. Unique sequences were found, which may also relate to unidentified biosynthetic proteins.  相似文献   

8.
Various fungal elicitors derived from 12 fungi were tested to improve indole alkaloid production in Catharanthus roseus cell suspension cultures. Results show that different fungal mycelium homogenates stimulate different kinds of indole alkaloid (ajmalicine, serpentine and catharanthine) accumulation, which ranged from 2- to 5-fold higher than the control. Some fungal culture filtrates also efficiently elicited the biosynthesis of different indole alkaloids. The optimal elicitor addition and exposure time for the maximal alkaloid production were on day 7 after subculture and for 3 days of treatment but different fungal elicitors showed the different optimal treatment dosages. Additions of elicitor at the doses ranging from 5 mg/l to 30 mg/l of carbon hydrate equivalent resulted in varieous amounts and kinds of indole alkaloid accumulation. Exposed to a same fungal elicitor, several different cell lines generated the different responses regarding as growth rate, culture color and alkaloid production.  相似文献   

9.
Habituated and tumorous Catharanthus roseus cells grown in the absence of hormones accumulated indole alkaloids. Total alkaloids and alkaloid pattern were the same when cells were cultured in medium without hormones or in alkaloid production medium with and without indole acetic acid. Treatment of cells with Pythium homogenate as elicitor did not increase total alkaloids or change the pattern of alkaloids produced. When either habituated or tumorous cells were grown in 1B5 medium after Gamborg et al (1968) containing 2,4-dichlorophenoxyacetic acid (2,4-D), their capacity to accumulate alkaloids decreased with time. The levels of tryptophan decarboxylase (TDC) and strictosidine synthase (SS) specific activities were constant throughout growth except when cells were exposed to 2,4-D in 1B5 medium, where enzyme activities declined in step with the decrease in alkaloid accumulation. Neither habituated nor tumorous cell suspension cultures accumulated vindoline, nor could they be induced to produce this alkaloid by any of the given treatments.NRCC No. 27514  相似文献   

10.
We have used a transgenic cell line of Catharanthus roseus (L.) G. Don to study the relative importance of the supply of biosynthetic precursors for the synthesis of terpenoid indole alkaloids. Line S10 carries a recombinant, constitutively overexpressed version of the endogenous strictosidine synthase (Str) gene. Various concentrations and combinations of the substrate tryptamine and of loganin, the immediate precursor of secologanin, were added to suspension cultures of S10. Our results indicate that high rates of tryptamine synthesis can take place under conditions of low tryptophan decarboxylase activity, and that high rates of strictosidine synthesis are possible in the presence of a small tryptamine pool. It appears that the utilization of tryptamine for alkaloid biosynthesis enhances metabolic flux through the indole pathway. However, a deficiency in the supply of either the iridoid or the indole precursor can limit flux through the step catalyzed by strictosidine synthase. Precursor utilization for the synthesis of strictosidine depends on the availability of the cosubstrate; the relative abundance of these precursors is a cell-line-specific trait that reflects the metabolic status of the cultures.  相似文献   

11.
Two year old, transformed root cultures of Catharanthus roseus accumulate ajmalicine and catharanthine (0.57 and 0.36 mg g-1 DW, or 7.0 and 3.0 mg l-1, respectively). Changes in the concentration of the medium components, as well as the addition of hydrolytic enzymes and biotic elicitors, were used as strategies to increase these alkaloid yields. Regarding the components of the medium, the results obtained, when sucrose was raised from 3 to 4.5%, are noteworthy. The nitrogen source induced differential responses in the individual alkaloid yields. No net change in the alkaloid content was observed either with changes in the concentration of vitamins or macro-and micronutrients. Though the root culture only shows a limited response to elicitors, Aspergillus treatment and the use of macerozyme increased the accumulation of ajmalicine selectively, while the addition of methyl jasmonate increased the yield of both alkaloids.Abbreviations MeJa methyl jasmonate - mU milliunits  相似文献   

12.
A cell suspension culture of Tabernaemontana elegans lost its ability to produce alkaloids after a prolonged period of subculture. To determine whether it was still capable of performing the later steps of the alkaloid biosynthetic pathway, the culture was fed with tryptamine and loganin. The precursors and alkaloids were determined in the biomass and in the medium during a growth cycle. In this culture, an increase in the amount of serotonin was found in the biomass after feeding of tryptamine and loganin. Secologanin was detected in small amounts but strictosidine was not. Therefore, a limitation in alkaloid formation in this T. elegans cell line occured in the formation of secologanin from loganin. After feeding of secologanin alone, strictosidine, 10-hydroxy strictosidine, strictosidinic acid and two other indole alkaloids, as yet unidentified, were formed. However, the alkaloids originally produced by this cell line were not found. As the biosynthesis is impaired at several steps, it seems that the loss of productivity is more likely to be to a change on the level of the regulation of the pathway, than due to the loss of the capacity to express an individual biosynthetic gene of the pathway.  相似文献   

13.
Cells of Catharanthus roseus (L.) G. Don were genetically engineered to over-express the enzymes strictosidine synthase (STR; EC 4.3.3.2) and tryptophan decarboxylase (TDC; EC 4.1.1.28), which catalyze key steps in the biosynthesis of terpenoid indole alkaloids (TIAs). The cultures established after Agrobacterium-mediated transformation showed wide phenotypic diversity, reflecting the complexity of the biosynthetic pathway. Cultures transgenic for Str consistently showed tenfold higher STR activity than wild-type cultures, which favored biosynthetic activity through the pathway. Two such lines accumulated over 200 mg · L−1 of the glucoalkaloid strictosidine and/or strictosidine-derived TIAs, including ajmalicine, catharanthine, serpentine, and tabersonine, while maintaining wild-type levels of TDC activity. Alkaloid accumulation by highly productive transgenic lines showed considerable instability and was strongly influenced by culture conditions, such as the hormonal composition of the medium and the availability of precursors. High transgene-encoded TDC activity was not only unnecessary for increased productivity, but also detrimental to the normal growth of the cultures. In contrast, high STR activity was tolerated by the cultures and appeared to be necessary, albeit not sufficient, to sustain high rates of alkaloid biosynthesis. We conclude that constitutive over-expression of Str is highly desirable for increased TIA production. However, given its complexity, limited intervention in the TIA pathway will yield positive results only in the presence of a favorable epigenetic environment. Received: 12 June 1997 / Accepted: 24 October 1997  相似文献   

14.
15.
The Madagascar periwinkle (Catharanthus roseus) produces the well known and remarkably complex anticancer dimeric alkaloids vinblastine and vincristine, which are derived by the coupling of vindoline and catharanthine monomers. Recent data from in situ RNA hybridization and immunolocalization suggest that combinatorial cell factories within the leaf are involved in vindoline biosynthesis. In this study, the cell types responsible for vindoline biosynthesis were identified by laser-capture microdissection/RNA isolation/RT-PCR to show that geraniol hydroxylase, secologanin synthase, tryptophan decarboxylase, strictosidine synthase, strictosidine ss-glucosidase and tabersonine 16-hydroxylase can be detected preferentially in epidermal cells. A new and complementary application of the carborundum abrasion (CA) technique was developed to obtain epidermis-enriched leaf extracts that can be used to measure alkaloid metabolite levels, enzyme activities and gene expression. The CA technique showed that tabersonine and 16-methoxytabersonine, together with 16-hydroxytabersonine-16-O-methyltransferase, are found predominantly in Catharanthus leaf epidermis, in contrast to vindoline, catharanthine and later enzymatic steps in vindoline biosynthesis. The results show that leaf epidermal cells are biosynthetically competent to produce tryptamine and secologanin precursors that are converted via many enzymatic transformations to make 16-methoxytabersonine. This alkaloid or its 2,3 dihydro-derivative is then transported to cells (mesophyll/idioblast/laticifer) within Catharanthus leaves to complete the last three or four enzymatic transformations to make vindoline.  相似文献   

16.
A Catharanthus roseus cell line was selected that synthesised catharanthine exclusively under elicitation.From the first day of culture, treatment with very low concentrations of a Pythium extract did not alter the growth of the suspension but, within 24 hours, induced the synthesis of catharanthine and stimulated the production of ajmalicine. Kinetic analysis showed that serpentine then began to accumulate and that all of these effects lasted more than 7 days. Elicitation also induced changes in the cell/medium distribution of the alkaloids. Higher, although non-lethal, concentrations of the fungal elicitor were shown to impair alkaloid production. This cell line will serve as a model to study the conditions for the expression of catharanthine synthesis at the molecular level.Abbreviations gE glucose-equivalent - MS Murashige and Skoog medium - 2,4-D 2,4-Dichlorophenoxyacetic acid  相似文献   

17.
Cell suspension cultures (cell line No 615) of Catharanthus roseus cv. Little Delicata responded to elicitor treatment by accumulating monoterpenoid indole alkaloids and phenolic compounds. The excretion of phenols into the culture medium resulted from the induction of the branch-point enzyme phenylalanine ammonia lyase. The accumulation of alkaloids, however, occurred several hours earlier than the elicitor-mediated induction of tryptophan decarboxylase through which shikimate pathway intermediates are channelled into tryptamine and related indole alkaloids. The results indicate that both pathways for phenol and indole alkaloid biosynthesis responded to elicitor treatment and that no obvious causal relationship between pathways could be deduced from this study.Abbreviations PAL phenylalanine ammonia lyase - TDC tryptophan decarboxylase Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   

18.
Different methods of in vitro culture of Catharanthus roseus provide new sources of plant material for the production of secondary metabolites such as indole alkaloids. Callus, cell suspension, plantlets, and transgenic roots cultured in the bioreactor are used in those experiments. The most promising outcomes include the production of the following indole alkaloids: ajmalicine in unorganised tissue, catharanthine in the leaf and cell culture in the shake flask and airlift bioreactor, and vinblastine in shoots and transformed roots. What is very important, enzymatic coupling of monomeric indole alkaloids, vindoline and catharanthine, is possible to form vinblastine in cell cultures. The method of catharanthine and ajmalicine production in the suspension culture in bioreactors has been successful. In this method, elicitation may be used acting on different metabolic pathways. Also of interest is the method of obtaining arbutin from the callus culture of C. roseus conducted with hydroquinone. The transformed root culture seems to be the most promising for alkaloid production. The genetically transformed roots, obtained by the infection with Agrobacterium rhizogenes, produce higher levels of secondary metabolites than intact plants. Also, whole plants can be regenerated from hairy roots. The content of indole alkaloids in the transformed roots was similar or even higher when compared to the amounts measured in studies of natural roots. The predominant alkaloids in transformed roots are ajmalicine, serpentine, vindoline and catharanthine, found in higher amounts than in untransformed roots. Transformed hairy roots have been also used for encapsulation in calcium alginate to form artificial seeds.  相似文献   

19.
A study on the effect of various bioregulators on the biosynthesis of ajmalicine (8) and catharanthine (9) in plant tissue cultures of Catharanthus roseus is described. It is shown that 1,1-dimethylpiperidine bromide (3) and 2-diethylaminoethyl-3,4-dimethylphenylether (7) are effective in increasing these alkaloid levels in the cell line PRL #200. Such studies may prove beneficial in larger scale experiments designed for the production of these alkaloids.  相似文献   

20.
Summary To produce economically important indole alkaloids by cell culture, we have selected protoclones ofCatharanthus roseus for high yields of catharanthine and ajmalicine. Protoplasts were enzymatically isolated from suspension-cultured cells. Protoclone VPC-10 produced catharanthine at 5.9 μg/g fresh wt of cells after 10 days of culture, although the original cell line did not produce it at a level detectable by HPLC. Under the same conditions, protoclone VPC-15 produced ajmalicine at 133.6 μg/g, which was about 3 times the productivity of the original cell line. In addition, the indole alkaloids were qualitatively confirmed by LC-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号