首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exact mechanism of tumour necrosis factor α (TNF‐α) promoting osteoclast differentiation is not completely clear. A variety of P2 purine receptor subtypes have been confirmed to be widely involved in bone metabolism. Thus, the purpose of this study was to explore whether P2 receptor is involved in the differentiation of osteoclasts. Mouse bone marrow haematopoietic stem cells (BMHSCs) were co‐cultured with TNF‐α to explore the effect of TNF‐α on osteoclast differentiation and bone resorption capacity in vitro, and changes in the P2 receptor were detected at the same time. The P2 receptor was silenced and overexpressed to explore the effect on differentiation of BMHSCs into osteoclasts. In an in vivo experiment, the animal model of PMOP was established in ovariectomized mice, and anti‐TNF‐α intervention was used to detect the ability of BMHCs to differentiate into osteoclasts as well as the expression of the P2 receptor. It was confirmed in vitro that TNF‐α at a concentration of 20 ng/mL up‐regulated the P2X7 receptor of BMHSCs through the PI3k/Akt signalling pathway, promoted BMHSCs to differentiate into a large number of osteoclasts and enhanced bone resorption. In vivo experiments showed that more P2X7 receptor positive osteoclasts were produced in postmenopausal osteoporotic mice. Anti‐TNF‐α could significantly delay the progression of PMOP by inhibiting the production of osteoclasts. Overall, our results revealed a novel function of the P2X7 receptor and suggested that suppressing the P2X7 receptor may be an effective strategy to delay bone formation in oestrogen deficiency‐induced osteoporosis.  相似文献   

2.
Early spontaneous abortion (ESA) is one of the most common complications during pregnancy and the inflammation condition in uterine environment such as long‐term exposure to high TNFα plays an essential role in the aetiology. Ferritin heavy chain (FTH1) is considered to be closely associated with inflammation and very important in normal pregnancy, yet the underlying mechanism of how TNFα induced abortion and its relationship with FTH1 remain elusive. In this study, we found that TNFα and FTH1 were positively expressed in decidual stromal cells and increased significantly in the ESA group compared with the normal pregnancy group (NP group). Besides, TNFα expression was positively correlated with FTH1 expression. Furthermore, in vitro cell model demonstrated that high TNFα could induce the abnormal signals of TNFR/NF‐κB/FTH1 and activate apoptosis both in human endometrium stromal cells (hESCs) and in local decidual tissues. Taken together, the present findings suggest that the excessive apoptosis in response to TNFα‐induced upregulation of FTH1 may be responsible for the occurrence of ESA, and thus provide a possible therapeutic target for the treatment of ESA.  相似文献   

3.
It has been demonstrated that the action of dopamine (DA) could enhance the production of tumour necrosis factor‐α (TNF‐α) by astrocytes and potentiate neuronal apoptosis in minimal hepatic encephalopathy (MHE). Recently, sodium hydrosulfide (NaHS) has been found to have neuroprotective properties. Our study addressed whether NaHS could rescue DA‐challenged inflammation and apoptosis in neurons to ameliorate memory impairment in MHE rats and in the neuron and astrocyte coculture system. We found that NaHS suppressed DA‐induced p65 acetylation, resulting in reduced TNF‐α production in astrocytes both in vitro and in vivo. Furthermore, decreased apoptosis was observed in neurons exposed to conditioned medium from DA + NaHS‐challenged astrocytes, which was similar to the results obtained in the neurons exposed to TNF‐α + NaHS, suggesting a therapeutic effect of NaHS on the suppression of neuronal apoptosis via the reduction of TNF‐α level. DA triggered the inactivation of p70 S6 ribosomal kinase (S6K1) and dephosphorylation of Bad, resulting in the disaggregation of Bclxl and Bak and the release of cytochrome c (Cyt. c), and this process could be reversed by NaHS administration. Our work demonstrated that NaHS attenuated DA‐induced astrocytic TNF‐α release and ameliorated inflammation‐induced neuronal apoptosis in MHE. Further research into this approach may uncover future potential therapeutic strategies for MHE.  相似文献   

4.
Multidrug resistance is the main obstacle to curing hepatocellular carcinoma (HCC). Acid‐sensing ion channel 1a (ASIC1a) has critical roles in all stages of cancer progression, especially invasion and metastasis, and in resistance to therapy. Epithelial to mesenchymal transition (EMT) transforms epithelial cells into mesenchymal cells after being stimulated by extracellular factors and is closely related to tumour infiltration and resistance. We used Western blotting, immunofluorescence, qRT‐PCR, immunohistochemical staining, MTT, colony formation and scratch healing assay to determine ASIC1a levels and its relationship to cell proliferation, migration and invasion. ASIC1a is overexpressed in HCC tissues, and the amount increased in resistant HCC cells. EMT occurred more frequently in drug‐resistant cells than in parental cells. Inactivation of ASIC1a inhibited cell migration and invasion and increased the chemosensitivity of cells through EMT. Overexpression of ASIC1a upregulated EMT and increased the cells’ proliferation, migration and invasion and induced drug resistance; knocking down ASIC1a with shRNA had the opposite effects. ASIC1a increased cell migration and invasion through EMT by regulating α and β‐catenin, vimentin and fibronectin expression via the AKT/GSK‐3β/Snail pathway driven by TGFβ/Smad signals. ASIC1a mediates drug resistance of HCC through EMT via the AKT/GSK‐3β/Snail pathway.  相似文献   

5.
6.
Balancing cell death is essential to maintain healthy tissue homeostasis and prevent disease. Tumor necrosis factor (TNF) not only activates nuclear factor κB (NFκB), which coordinates the cellular response to inflammation, but may also trigger necroptosis, a pro‐inflammatory form of cell death. Whether TNF‐induced NFκB affects the fate decision to undergo TNF‐induced necroptosis is unclear. Live‐cell microscopy and model‐aided analysis of death kinetics identified a molecular circuit that interprets TNF‐induced NFκB/RelA dynamics to control necroptosis decisions. Inducible expression of TNFAIP3/A20 forms an incoherent feedforward loop to interfere with the RIPK3‐containing necrosome complex and protect a fraction of cells from transient, but not long‐term TNF exposure. Furthermore, dysregulated NFκB dynamics often associated with disease diminish TNF‐induced necroptosis. Our results suggest that TNF''s dual roles in either coordinating cellular responses to inflammation, or further amplifying inflammation are determined by a dynamic NFκB‐A20‐RIPK3 circuit, that could be targeted to treat inflammation and cancer.  相似文献   

7.
Older age and underlying conditions such as diabetes/obesity or immunosuppression are leading host risk factors for developing severe complications from COVID‐19 infection. The pathogenesis of COVID‐19‐related cytokine storm, tissue damage, and fibrosis may be interconnected with fundamental aging processes, including dysregulated immune responses and cellular senescence. Here, we examined effects of key cytokines linked to cellular senescence on expression of SARS‐CoV‐2 viral entry receptors. We found exposure of human umbilical vein endothelial cells (HUVECs) to the inflammatory cytokines, TNF‐α + IFN‐γ or a cocktail of TNF‐α + IFN‐γ + IL‐6, increased expression of ACE2/DPP4, accentuated the pro‐inflammatory senescence‐associated secretory phenotype (SASP), and decreased cellular proliferative capacity, consistent with progression towards a cellular senescence‐like state. IL‐6 by itself failed to induce substantial effects on viral entry receptors or SASP‐related genes, while synergy between TNF‐α and IFN‐γ initiated a positive feedback loop via hyper‐activation of the JAK/STAT1 pathway, causing SASP amplification. Breaking the interactive loop between senescence and cytokine secretion with JAK inhibitor ruxolitinib or antiviral drug remdesivir prevented hyper‐inflammation, normalized SARS‐CoV‐2 entry receptor expression, and restored HUVECs proliferative capacity. This loop appears to underlie cytokine‐mediated viral entry receptor activation and links with senescence and hyper‐inflammation.  相似文献   

8.
9.
Bone is the preferential site of metastasis for breast cancer. Invasion of cancer cells induces the destruction of bone tissue and damnification of peripheral nerves and consequently induced central sensitization which contributes to severe pain. Herein, cancer induced bone pain (CIBP) rats exhibited destruction of tibia, mechanical allodynia and spinal inflammation. Inflammatory response mainly mediated by astrocyte and microglia in central nervous system. Our immunofluorescence analysis revealed activation of spinal astrocytes and microglia in CIBP rats. Transmission electron microscopy (TEM) observations of mitochondrial outer membrane disruption and cristae damage in spinal mitochondria of CIBP rats. Proteomics analysis identified abnormal expression of proteins related to mitochondrial organization and function. Intrathecally, injection of GSK‐3β activity inhibitor TDZD‐8 significantly attenuated Drp1‐mediated mitochondrial fission and recovered mitochondrial function. Inhibition of GSK‐3β activity also suppressed NLRP3 inflammasome cascade and consequently decreased mechanical pain sensitivity of CIBP rats. For cell research, TDZD‐8 treatment significantly reversed TNF‐α induced mitochondrial membrane potential (MMP) deficiency and high mitochondrial reactive oxygen species level. Taken together, GSK‐3β inhibition by TDZD‐8 decreases spinal inflammation and relieves cancer induced bone pain via reducing Drp1‐mediated mitochondrial damage.  相似文献   

10.
11.
Epithelial‐mesenchymal transition (EMT) has been contributed to increase migration and invasion of cancer cells. However, the correlate of Naa10p and IKKα with EMT in oral squamous cell carcinoma (OSCC) is not yet fully understood. In our present study, we found N‐α‐acetyltransferase 10 protein (Naa10p) and IκB kinase α (IKKα) were abnormally abundant in oral squamous cell carcinoma (OSCC). Bioinformatic results indicate that the expression of Naa10p and IKKα is correlated with TGF‐β1/Smad and EMT‐related molecules. The Transwell migration, invasion, qRT‐PCR and Western blot assay indicated that Naa10p repressed OSCC cell migration, invasion and EMT, whereas IKKα promoted TGF‐β1–mediated OSCC cell migration, invasion and EMT. Mechanistically, Naa10p inhibited IKKα activation of Smad3 through the interaction with IKKα directly in OSCC cells after TGF‐β1 stimulation. Notably, knockdown of Naa10p reversed the IKKα‐induced change in the migration, invasion and EMT‐related molecules in OSCC cells after TGF‐β1 stimulation. These findings suggest that Naa10p interacted with IKKα mediates EMT in OSCC cells through TGF‐β1/Smad, a novel pathway for preventing OSCC.  相似文献   

12.
Despite extensive research, the mechanisms underlying rhabdomyolysis‐induced acute kidney injury (AKI) remain largely elusive. In this study, we established both cell and murine models of rhabdomyolysis‐induced AKI by using myoglobin and glycerin, respectively, and provided evidence that protein kinase Cδ (PKC‐δ) was activated in both models and subsequently promoted cell apoptosis. Moreover, we found that this detrimental effect of PKC‐δ activation can be reversed by its pharmaceutical inhibitor rottlerin. Furthermore, we detected and confirmed the existence of PKC‐δ‐mediated myoglobin‐induced cell apoptosis and the expression of TNF‐α and IL1‐β via regulation of the p38MAPK and ERK1/2 signalling pathways. In summary, our research revealed the role of PKC‐δ in renal cell apoptosis and suggests that PKC‐δ is a viable therapeutic target for rhabdomyolysis‐induced AKI.  相似文献   

13.
14.
15.
16.
17.
Colorectal carcinoma (CRC) recurrence is often accompanied by metastasis. Most metastasis undergo through epithelial‐mesenchymal transition (EMT). Studies showed that retinol X receptor alpha (RXRα) and 20(S)‐Protopanaxadiol (PPD) have anti‐tumour effects. However, the anti‐metastasis effect of 20(S)‐PPD and the effect of RXRα on EMT‐induced metastasis are few studies on. Therefore, the role of RXRα and 20(S)‐PPD in CRC cell metastasis remains to be fully elucidated. RXRα with clinicopathological characteristics and EMT‐related expression in clinical samples were examined. Then, RXRα and EMT level in SW480 and SW620 cells, overexpressed and silenced RXRα in SW620 cells and SW480 cells, respectively, were evaluated. Finally, 20(S)‐PPD effect on SW620 and SW480 cells was evaluated. The results showed that a lower RXRα expression in cancer tissues, and a moderate negative correlation between RXRα and N stage, and tended to higher level of EMT. SW480 and SW620 cells had the highest and lowest RXRα expression among four CRC cell lines. SW480 had lower EMT level than SW620. Furthermore, 20(S)‐PPD increased RXRα and inhibited EMT level in SW620 cell. Finally, 20(S)‐PPD cannot restore SW480 cells EMT level to normal when RXRα silencing. These findings suggest that 20(S)‐PPD may inhibit EMT process in CRC cells by regulating RXRα expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号