首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Ferric nitrilotriacetate (Fe-NTA), a common water pollutant and a known renal carcinogen, acts through the generation of oxidative stress and hyperproliferative response. In the present study, we show that the nitric oxide (NO) generated by the administration of glyceryl trinitrate (GTN) affords protection against Fe-NTA-induced oxidative stress and proliferative response. Administration of Fe-NTA resulted in a significant (P<0.001) depletion of renal glutathione (GSH) content with concomitant increase in lipid peroxidation and elevated tissue damage marker release in serum. Parallel to these changes, Fe-NTA also caused down-regulation of GSH metabolizing enzymes including glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase and several fold induction in ornithine decarboxylase (ODC) activity and rate of DNA synthesis. Subsequent exogenous administration of GTN at doses of 3 and 6mg/kg body weight resulted in significant (P<0.001) recovery of GSH metabolizing enzymes and amelioration of tissue GSH content, in a dose-dependent manner. GTN administration also inhibited malondialdehyde (MDA) formation, induction of ODC activity, enhanced rate of DNA synthesis, and pathological deterioration in a dose-dependent fashion. Further, administration of NO inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), exacerbated Fe-NTA-induced oxidative tissue injury, hyperproliferative response, and pathological damage. Overall, the study suggests that NO administration subsequent to Fe-NTA affords protection against ROS-mediated damage induced by Fe-NTA.  相似文献   

2.
Rhabdomyolysis-induced myoglobinuric acute renal failure accounts for about 10-40% of all cases of acute renal failure (ARF). Nitric oxide and reactive oxygen intermediates play a crucial role in the pathogenesis of myoglobinuric acute renal failure (ARF). This study was designed to investigate the effect of molsidomine and L-arginine in glycerol induced ARF in rats. Six groups of rats were employed in this study, group I served as control, group II was given 50% glycerol (8 ml/kg, intramuscularly), groups III and IV were given glycerol plus molsidomine (5 mg/kg, and 10 mg/kg p.o. route respectively) 60 min prior to the glycerol injection, group V animals were given glycerol plus L-arginine (125 mg/kg, p.o.) 60 min prior to the glycerol injection, and group VI received L-NAME (10 mg/kg, i.p.) along with glycerol 30 min prior to glycerol administration. Renal injury was assessed by measuring plasma creatinine, blood urea nitrogen, creatinine and urea clearance. The oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels and by enzymatic activity of catalase, reduced glutathione and superoxide dismutase. Tissue and urine nitrite levels were measured as an index of total nitric oxide levels. Glycerol treatment resulted in a marked decrease in tissue and urine nitric oxide levels, renal oxidative stress and significantly deranged the renal functions along with deterioration of renal morphology. Pre-treatment of animals with molsidomine (10 mg/kg) and L-arginine 60 min prior to glycerol injection markedly attenuated fall in nitric oxide levels, renal dysfunction, morphological alterations, reduced elevated TBARS and restored the depleted renal antioxidant enzymes. The animals treated with L-NAME along with glycerol further worsened the renal damage observed with glycerol. As a result, our results indicate that molsidomine and L-arginine may have beneficial effects in myoglobinuric ARF.  相似文献   

3.
The effects of mechanical stress on red blood cell (RBC) deformability were evaluated by subjecting cells to a uniform fluid shear stress of 120 Pa for 15-120 seconds at 37 degrees C. This level of stress induced significant impairment of RBC deformability as assessed by ektacytometry, with the degree of impairment independent of extracellular calcium concentration. Inhibition of RBC nitric oxide (NO) synthesis by a competitive inhibitor of NO synthases (N-omega-nitro-L-arginine methyl ester, L-NAME) had no effect on deformability after exposure to mechanical stress. The NO donor sodium nitroprusside (SNP) prevented the deterioration of RBC deformability in a dose-dependent manner with 10(-4) M being the most effective concentration. A similar protective effect by the non-selective potassium channel blocker, tetraethylammonium chloride (TEA) suggests that the effect of NO might be mediated by the inhibition of potassium leakage from RBC. These results suggest that NO may prevent mechanical deterioration of RBC exposed to high shear stresses. While RBC are not exposed to such high levels of shear stresses for prolonged periods under normal circulatory conditions, comparable levels of mechanical stress can be encountered under certain situations (i.e., artificial organs, extracorporeal circulation) and may result in subhemolytic damage and hemorheological alterations.  相似文献   

4.
Chronic nitric oxide synthase inhibition (NOSI) causes chronic kidney disease (CKD) in the Sprague Dawley (SD) rat. We previously showed that the Wistar-Furth (WF) rats are resistant to several models of CKD and maintain renal nitric oxide (NO) production compared with SD rats, whereas low-dose NOSI caused progression of CKD in WF rats. Here, we evaluate the impact of high-dose chronic NOSI in WF and SD rats, as well as intrarenal responses to an acute pressor dose of NOSI in the normal WF. Rats were given N(G)-nitro-l-arginine methyl ester (l-NAME) (150 and 300 mg/l for 6-10 wk) in the drinking water after an initial bolus tail vein injection. Both strains showed significant reductions in total NO production with chronic l-NAME. SD given 150 mg/l l-NAME for 6 wk developed proteinuria and renal injury, whereas WF rats receiving 150 mg/l l-NAME for 6-10 wk or 300 mg/l for 6 wk developed no proteinuria and minimal renal injury. Blood pressure was significantly elevated with chronic NOSI in both strains but was higher in the SD rat. There was little impact on renal nitric oxide synthase expression with l-NAME, except that cortical endothelial nitric oxide synthase abundance increased in WF after 6 wk (150 mg/l). Micropuncture experiments with acute pressor NOSI resulted in similar increases in systemic blood pressure in SD and WF rats, whereas WF rats showed a much smaller increment in glomerular blood pressure compared with SD rats. In conclusion, WF rats do not develop renal injury after chronic NOSI at, or above, a dose that causes significant injury in the SD rat. This protection may be associated with protection from glomerular hypertension.  相似文献   

5.
6.
We report the role of mitochondria in the protective effects of curcumin, a well-known direct and indirect antioxidant, against the renal oxidant damage induced by the hexavalent chromium [Cr(VI)] compound potassium dichromate (K2Cr2O7) in rats. Curcumin was given daily by gavage using three different schemes: (1) complete treatment (100, 200, and 400 mg/kg bw 10 days before and 2 days after K2Cr2O7 injection), (2) pretreatment (400 mg/kg bw for 10 days before K2Cr2O7 injection), and (3) posttreatment (400 mg/kg bw 2 days after K2Cr2O7 injection). Rats were sacrificed 48 h later after a single K2Cr2O7 injection (15 mg/kg, sc) to evaluate renal and mitochondrial function and oxidant stress. Curcumin treatment (schemes 1 and 2) attenuated K2Cr2O7-induced renal dysfunction, histological damage, oxidant stress, and the decrease in antioxidant enzyme activity both in kidney tissue and in mitochondria. Curcumin pretreatment attenuated K2Cr2O7-induced mitochondrial dysfunction (alterations in oxygen consumption, ATP content, calcium retention, and mitochondrial membrane potential and decreased activity of complexes I, II, II-III, and V) but was unable to modify renal and mitochondrial Cr(VI) content or to chelate chromium. Curcumin posttreatment was unable to prevent K2Cr2O7-induced renal dysfunction. In further experiments performed in curcumin (400 mg/kg)-pretreated rats it was found that this antioxidant accumulated in kidney and activated Nrf2 at the time when K2Cr2O7 was injected, suggesting that both direct and indirect antioxidant effects are involved in the protective effects of curcumin. These findings suggest that the preservation of mitochondrial function plays a key role in the protective effects of curcumin pretreatment against K2Cr2O7-induced renal oxidant damage.  相似文献   

7.
A Law  J Wu  L H Zeng  T W Wu 《Life sciences》1999,64(19):PL199-PL204
Cultured porcine aortic endothelial cells (PAEC) were exposed to four concentrations (0.00 mM - 5.00 mM) of 3-Morpholino-sydnonimine-hydrochloride (SIN-1, a nitric oxide donor). SIN-1 demonstrated a dose dependent cytotoxicity against PAEC as indicated by the thiobarbituric acid (TBA) assay. Morphologically and biochemically, the presence of selected flavonoids (morin, quercetin, or catechin) was shown to protect the PAEC from SIN-1 toxicity. Protection levels determined from the TBA assay were significant (p<0.05) for all flavonoids, with morin at 72+/-8%. Quercetin and catechin had comparable protective activities of 54+/-6% and 43+/-3%, respectively. This study supports the contention that SIN-1 is cytotoxic to PAEC and that antioxidants such as flavonoids may attenuate such toxicity.  相似文献   

8.
Nitric oxide (NO) is a potent extracellular and intracellular physiological messenger. However, NO liberated in excessive amounts can be involved in macromolecular and mitochondrial damage in brain aging and in neurodegenerative disorders. The molecular mechanism of its neurotoxic action is not fully understood. Our previous data indicated involvement of NO in the release of arachidonic acid (AA), a substrate for cyclo- and lipoxygenases (COX and LOX, respectively). In this study we investigated biochemical processes leading to cell death evoked by an NO donor, sodium nitroprusside (SNP). We found that SNP decreased viability of pheochromocytoma (PC12) cells in a concentration- and time-dependent manner. SNP at 0.1 mM caused a significant increase of apoptosis-inducing factor (AIF) protein level in mitochondria. Under these conditions 80% of PC12 cells survived. The enhancement of mitochondrial AIF level might protect most of PC12 cells against death. However, NO released from 0.5 mM SNP induced massive cell death but had no effect on protein level and localization of AIF and cytochrome c. Caspase-3 activity and poly(ADP-ribose) polymerase-1 (PARP-1) protein levels were not changed. However, PARP activity significantly decreased in a time-dependent manner. Inhibition of both COX isoforms and of 12/15-LOX significantly lowered the SNP-evoked cell death. We conclude that AIF, cytochrome c and caspase-3 are not responsible for the NO-mediated cell death evoked by SNP. The data demonstrate that NO liberated in excess decreases PARP-1 activity. Our results indicate that COX(s) and LOX(s) are involved in PC12 cell death evoked by NO released from its donor, SNP.  相似文献   

9.
Nitric oxide (NO) is known to inhibit mitochondrial respiration reversibly. This study aimed at clarifying whether low level illumination at specific wavelengths recovers mitochondrial respiration inhibited by NO and glycerol-trinitrate (GTN), a clinically used NO mimetic. NO fully inhibited respiration of liver mitochondria at concentrations occurring under septic shock. The respiration was completely restored by illumination at the wavelength of 430 nm while longer wavelengths were less effective. GTN inhibited mitochondrial respiration though the efficiency of GTN was lower compared to NO concentrations observed in sepsis models. However, GTN inhibition was absolutely insensitive to illumination regardless of wavelength used. Our data show that visible light of short wavelengths efficiently facilitates the recovery of mitochondria inhibited by NO-gas at the levels generated under septic conditions. The inhibition of mitochondrial respiration by GTN is not sensitive to visible light, suggesting an inhibition mechanism other that NO mediation.  相似文献   

10.
We describe here a new compound, B-NOD, which, in vitro and in situ, releases nitric oxide (NO). Its activity in situ persists for more than 7 h, it does not cause a fall in blood pressure or an increase in heart rate and can be orally administered. It increases cyclic guanosine monophosphate (cGMP) and prevents platelet aggregation. In vitro, its release of NO is augmented by the presence of living cells (blood platelets). B-NOD may be useful in a number of clinical conditions in which prolonged release of NO without hemodynamic effects are desirable. A combination of aspirin with B-NOD could be formulated in which the individual concentrations of aspirin and B-NOD may be useful in the long-term treatment of coronary artery disease and in clinical situations in which long-term release of NO may be beneficial.  相似文献   

11.
The acute toxicity of potassium bromate (KBrO3) on rat small intestine was studied in this work. Animals were given a single oral dose of KBrO3 (100 mg/kg body weight) and sacrificed 12, 24, 48, 96 and 168 h after the treatment; control animals were not given KBrO3. The administration of KBrO3 resulted in a reversible decline in the specific activities of several BBM enzymes. Lipid peroxidation, protein oxidation and hydrogen peroxide levels increased while total sulfhydryl groups and reduced glutathione decreased in KBrO3-treated rats indicating induction of oxidative stress in the intestinal mucosa. The activities of anti-oxidant and carbohydrate metabolic enzymes were also altered upon KBrO3 treatment. The maximum changes in all the parameters were 48 h after administration of KBrO3 after which recovery took place, in many cases almost to control values after 168 h. Histopathological studies supported the biochemical findings showing extensive damage to the intestine at 48 h and recovery at 168 h. These results show that a single oral dose of KBrO3 causes reversible oxidative damage to the intestine.  相似文献   

12.
The aqueous decay and concomitant release of nitric oxide (*NO) by nitrolinoleic acid (10-nitro-9,12-octadecadienoic acid and 12-nitro-9,12-octadecadienoic acid; LNO2) are reported. Mass spectrometric analysis of reaction products supports a modified Nef reaction as the mechanism accounting for the generation of *NO by the aqueous reactions of fatty acid nitroalkene derivatives. Nitrolinoleic acid is stabilized by an aprotic milieu, with LNO2 decay and *NO release strongly inhibited by phosphatidylcholine/cholesterol liposome membranes and detergents when present at levels above their critical micellar concentrations. The release of *NO from LNO2 was induced by UV photolysis and triiodide-based ozone chemiluminescence reactions currently used to quantify putative protein nitrosothiol and N-nitrosamine derivatives. This reactivity of LNO2 complicates the qualitative and quantitative analysis of biological oxides of nitrogen when applying UV photolysis and triiodide-based analytical systems to biological preparations typically abundant in nitrated fatty acids. The results reveal that nitroalkene derivatives of linoleic acid are pluripotent signaling mediators that act not only via receptor-dependent mechanisms, but also by transducing the signaling actions of *NO via pathways subject to regulation by the relative distribution of LNO2 to hydrophobic versus aqueous microenvironments.  相似文献   

13.
Isolates of Rhizobium leguminosarum bv. trifolii (the clover root-nodule endosymbiont) from the Nile River delta have been found to infect rice roots and colonize the intercellular spaces of the rice roots. Some of these isolates inhibit rice seedling growth but one in particular, R4, has been found in rice roots which develop and grow normally. We present evidence that the induced growth inhibition is due to a toxic accumulation of nitric oxide (NO), from the reduction of nitrate, and suggest that the reason that R4 does not inhibit rice root growth is because it is capable of completing the reduction of NO through to nitrogen gas. Thus, strain R4 is a candidate for engineering into a future biological nitrogen fixation system within these roots.  相似文献   

14.
Thyroid hormones regulate energy metabolism and act on mitochondria which are an important source of free radicals in the cell. The pineal gland activates antioxidant systems via melatonin secretion and thus has a protective function in body tissues. The present study was conducted to determine the oxidative damage caused by hyperthyroidism in kidney and testis tissues of pinealectomized rats. Experimental animals were allocated to three groups: 1, control group; 2, sham pinealectomy-hyperthyroidic group; and 3, pinealectomy-hyperthyroidic group. Hyperthyroidism was induced by A 3-week intraperitoneal administration of thyroxin after sham pinealectomy or pinealectomy. Malondialdehyde (MDA) and glutathione (GSH) levels were determined in kidney and testis tissues. MDA levels of the kidney and testis tissue in the pinealectomy and hyperthyroidic groups were significantly higher than those in the sham pinealectomy-hyperthyroidic group and the control group (p < 0.001). GSH levels of both kidney and testis tissues were significantly higher in the sham-pinealectomy-hyperthyroidic group when compared to the other two groups (p < 0.001). This increase in GSH levels was more evident in the pinealectomy-hyperthyroidic group than in the control group (p < 0.001). The results of our study demonstrate that MDA and GSH levels in kidney and testis tissues increased due to hyperthyroidism and that pinealectomy made the increase in MDA levels more apparent, while decreasing GSH levels.  相似文献   

15.
Potential action of ultra-wideband (UWB) electromagnetic field pulses on effects of N(G)-nitro- L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), on nociception and locomotor activity was investigated in CF-1 mice. Animals were injected IP with saline or 50 mg/kg L-NAME and exposed for 30 min to no pulses (sham exposure) or UWB pulses with electric field parameters of 102+/-1 kV/m peak amplitude, 0.90+/-0.05 ns duration, and 160+/-5 ps rise time (mean+/-S.D.) at 600/s. Animals were tested for thermal nociceptive responses on a 50 degrees C surface and for spontaneous locomotor activity for 5 min. L-NAME by itself increased mean first-response (paw lift, shake, or lick; jump) and back-paw-lick response latencies and mean locomotor activity. Exposure to UWB pulses reduced the L-NAME-induced increase in back-paw-lick latency by 22%, but this change was not statistically significant. The L-NAME-induced hyperactivity was not present after UWB exposure. Reduction and cancellation of effects of L-NAME suggest activation of opposing mechanism(s) by the UWB pulses, possibly including increase of nitric oxide production by NOS. The action, or actions, of UWB pulses appears to be more effective on locomotor activity than on thermal nociception in CF-1 mice.  相似文献   

16.
We previously found that one of the pharmacological effects of N-tert-butyl-alpha-phenylnitrone (PBN) is the release of nitric oxide (NO) under oxidative conditions. However, to confirm this hypothesis in vivo, NO released from PBN must be distinguished from NO produced in biological systems, and therefore we undertook the synthesis of PBN using labeled 15N to identify its corresponding 15NO in vivo. The properties were examined with an ESR spectrometer. To synthesize 15N-PBN, the starting material, ammonium-15N chloride, was converted to 2-amino-15N-2-methylpropane, oxidized to 2-methyl-2-nitropropane-15N, and finally reacted with benzaldehyde to give 15N-PBN. The final product was purified by repeated sublimation. With ferrous sulfate-methyl glucamine dithiocarbamate complex, Fe (MGD)2, as a trapping agent to measure the NO levels of 15N-PBN or 14N-PBN in vitro, the peak intensity of 15NO[Fe(MGD)2] was over 50% stronger than that of 14NO[Fe(MGD)2], and that 15NO and 14NO had the corresponding two-and three line hyperfine structures due to their nuclear spin quantum numbers. Subsequently, the ESR spectrum of 15NO derived from 15N-PBN was significantly different than that of lipopolysaccharide (LPS)-induced NO, which was derived from biological cells, and therefore we have demonstrated the possibility to distinguish 15NO from PBN and 14NO generated from cells. These results suggested that 15N-PBN is a useful molecule, not only as a spin-trapping agent, but also as an NO donor to explore the pharmacological mechanisms of PBN in vivo.  相似文献   

17.
The efficacy of gallium (Ga) nitrate was examined in a murine model of sepsis. Male Balb/c mice (6-8 weeks) were randomized into 3 groups: 1) vehicle-treated controls 2) mice with sepsis induced by treatment with 0.3 mg i.v. of Propionibacterium acnes followed one week later by 0.01 microg lipopolysaccharide (LPS) and 10 mg of D-galactosamine (GalN) 3) mice with sepsis injected with 45 mg/kg s.c. of gallium nitrate (calculated as elemental Ga) 24 hours prior to LPS/GalN. Two hours after LPS/GalN or vehicle, plasma concentrations of tumor necrosis factor (TNF-alpha) in groups 1, 2 and 3 were 54+/-31 (n=6), 21,390+/-5139 (n=4), and 21,909+/-943 (n=5) pg/ml, respectively. After 6 hours, plasma concentrations of gamma interferon (IFN-gamma) were <10 (n=8), 4771+/-1078 (n=6), and 1622+/-531 (n=15) pg/ml, respectively, and of nitrate/nitrite (products of nitric oxide) were 64+/-8 (n=7), 146+/-18 (n=8), and 57+/-8 (n=15) microM. At 18 hours, serum chemistries were; SGOT 171+/-46 (n=13), 10,986+/-3062 (n=7), and 1078+/-549 (n=8) IU/L; SGPT 165+/-59, 17,214+/-4340, and 2088+/-1097 IU/L; and total bilirubin 0.2+/-0.0, 0.9+/-0.4, and 0.2+/-0.0 mg/dl for groups 1, 2, and 3 respectively. Blinded histologic evaluation of livers at 18 hours revealed inflammatory infiltrate scores (x [range], 0=none, 1=minimal, 2=mild, 3=moderate, and 4=severe) of 0.1 [0-1] (n=8), 3.0 [2-4] (n=15), and 2.0 [0-3] (n=10), and necrosis scores of 0.0, 2.8 [0-4], and 0.9 [0-4]. Although Ga did not affect production of TNF-alpha, it ameliorated hepatocellular injury and protected against necrosis. Based on this model of sepsis, Ga may have a role in treating the human disease.  相似文献   

18.
A new class of anti-inflammatory (AI) cupferron prodrugs was synthesized wherein a diazen-1-ium-1,2-diolato ammonium salt, and its O2-methyl and O2-acetoxyethyl derivatives, nitric oxide (NO) donor moieties were attached directly to an aryl carbon on a celecoxib template. The percentage of NO released from the O2-methyl and O2-acetoxyethyl compounds was higher (18.0–37.8% of the theoretical maximal release of one molecule of NO/molecule of the parent compound) upon incubation in the presence of rat serum, relative to incubation with phosphate buffer saline (PBS) at pH 7.4 (3.8–11.6% range). All compounds exhibited weak inhibition of the COX-1 isozyme (IC50 = 5.8–17.0 μM range) in conjunction with weak or modest inhibition of the COX-2 isozyme (IC50 = 1.6–14.4 μM range). The most potent AI agent 5-[4-(O2-ammonium diazen-1-ium-1,2-diolato)phenyl]-1-(4-sulfamoylphenyl)-3-trifluoromethyl-1H-pyrazole exhibited a potency that was about fourfold and twofold greater than that observed for the respective reference drugs aspirin and ibuprofen. These studies indicate that use of a cupferron template constitutes a plausible drug design approach targeted toward the development of AI drugs that do not cause gastric irritation, or elevate blood pressure and induce platelet aggregation that have been associated with the use of some selective COX-2 inhibitors.  相似文献   

19.
Perkins, William J., Young-Soo Han, and Gary C. Sieck.Skeletal muscle force and actomyosin ATPase activity reduced bynitric oxide donor. J. Appl. Physiol.83(4): 1326-1332, 1997.Nitric oxide (NO) may exert directeffects on actin-myosin cross-bridge cycling by modulating criticalthiols on the myosin head. In the present study, the effects of the NOdonor sodium nitroprusside (SNP; 100 µM to 10 mM) on mechanicalproperties and actomyosin adenosinetriphosphatase (ATPase) activity ofsingle permeabilized muscle fibers from the rabbit psoas muscle weredetermined. The effects ofN-ethylmaleimide (NEM; 5-250µM), a thiol-specific alkylating reagent, on mechanical properties ofsingle fibers were also evaluated. Both NEM (25 µM) and SNP (1mM) significantly inhibited isometric force and actomyosin ATPaseactivity. The unloaded shortening velocity of SNP-treated single fiberswas decreased, but to a lesser extent, suggesting that SNP effects onisometric force and actomyosin ATPase were largely due to decreased cross-bridge recruitment. The calcium sensitivity of SNP-treated singlefibers was also decreased. The effects of SNP, but not NEM, on forceand actomyosin ATPase activity were reversed by treatment with 10 mMDL-dithiothreitol, athiol-reducing agent. We conclude that the NO donor SNP inhibitscontractile function caused by reversible oxidation of contractileprotein thiols.

  相似文献   

20.
Lin W  Wei X  Xue H  Kelimu M  Tao R  Song Y  Zhou Z 《Mutation research》2000,466(2):187-195
Nitric oxide (NO) as well as its donors has been shown to generate mutation and DNA damage in in vitro assays. The objective of this study was to identify that DNA single-strand breaks (SSBs) could be elicited by NO, not only in vitro but also in vivo. The alkaline single-cell gel electrophoresis (SCGE) was performed to examine the DNA damage in g12 cells and the cells isolated from the organs of mice exposed to sodium nitroprusside (SNP). A modified method, in which neither collagenase nor trypsin was necessary, was used to prepare the single-cell suspension isolated from organs of mice. Results showed that the exposure of g12 cells to 0.13-0.5 micromol/ml SNP with S9 for 1 h induced a concentration-dependent increase in DNA SSBs in g12 cells. The significant increase in DNA migration and comet frequency has appeared in the cells isolated from the spleen, thymus, and peritoneal macrophages of mice after injecting i.p. SNP in the dosage range of 0.67-6.0 mg/kg b.wt for 1 h. However, no obvious increase in DNA strand breaks was observed in the cells isolated from the liver, kidney, lung, brain and heart obtained from the same treated mice. These results suggested that DNA SSBs could be induced by NO in some cells both in vivo and in vitro. There were organ differences in sensitivity in the mice exposed to NO. Spleen, thymus, and macrophages might be the important targets of NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号