首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of recombinant proteins in tobacco guttation fluid   总被引:11,自引:0,他引:11  
Guttation, the loss of water and dissolved materials from uninjured plant organs, is a common phenomenon in higher plants. By using endoplasmic reticulum signal peptides fused to the recombinant protein sequences, we have generated transgenic tobacco (Nicotiana tabacum L. cv Wisconsin) plants that secrete three heterologous proteins of different genetic backgrounds (bacterial xylanase, green fluorescent protein of jellyfish [Aequorea victoria], and human placental alkaline phosphatase) through the leaf intercellular space into tobacco guttation fluid. Production rates of 1.1 microg/g of leaf dry weight per day were achieved for alkaline phosphatase with this protein comprising almost 3% of total soluble protein in the guttation fluid. Guttation fluid can be collected throughout a plant's life, thus providing a continuous and nondestructive system for recombinant protein production. Guttation fluid has the potential of increasing the efficiency of recombinant protein production technology by increasing yield, abolishing extraction, and simplifying its downstream processing.  相似文献   

2.
Boron (B) is known to accumulate in the leaf margins of different plant species, arguably a passive consequence of enhanced transpiration at the ends of the vascular system. However, transpiration rate is not the only factor affecting ion distribution. We examine an alternative hypothesis, suggesting the participation of the leaf bundle sheath in controlling radial water and solute transport from the xylem to the mesophyll in analogy to the root endodermis. In banana, excess B that remains confined to the vascular system is effectively disposed of via dissolution in the guttation fluid; therefore, impairing guttation should aggravate B damage to the leaf margins. Banana plants were subjected to increasing B concentrations. Guttation rates were manipulated by imposing a moderate osmotic stress. Guttation fluid was collected and analysed continuously. The distribution of ions across the lamina was determined. Impairing guttation indeed led to increased B damage to the leaf margins. The kinetics of ion concentration in guttation samples revealed major differences between ion species, corresponding to their distribution in the lamina dry matter. We provide evidence that the distribution pattern of B and other ions across banana leaves depends on active filtration of the transpiration stream and on guttation.  相似文献   

3.
Background and Aims Root hemiparasites from the rhinanthoid clade of Orobanchaceae possess metabolically active glandular trichomes that have been suggested to function as hydathode trichomes actively secreting water, a process that may facilitate resource acquisition from the host plant’s root xylem. However, no direct evidence relating the trichomes to water secretion exists, and carbon budgets associated with this energy-demanding process have not been determined.Methods Macro- and microscopic observations of the leaves of hemiparasitic Rhinanthus alectorolophus were conducted and night-time gas exchange was measured. Correlations were examined among the intensity of guttation, respiration and transpiration, and analysis of these correlations allowed the carbon budget of the trichome activity to be quantified. We examined the intensity of guttation, respiration and transpiration, correlations among which indicate active water secretion.Key Results Guttation was observed on the leaves of 50 % of the young, non-flowering plants that were examined, and microscopic observations revealed water secretion from the glandular trichomes present on the abaxial leaf side. Night-time rates of respiration and transpiration and the presence of guttation drops were positively correlated, which is a clear indicator of hydathode trichome activity. Subsequent physiological measurements on older, flowering plants indicated neither intense guttation nor the presence of correlations, which suggests that the peak activity of hydathodes is in the juvenile stage.Conclusions This study provides the first unequivocal evidence for the physiological role of the hydathode trichomes in active water secretion in the rhinanthoid Orobanchaceae. Depending on the concentration of organic elements calculated to be in the host xylem sap, the direct effect of water secretion on carbon balance ranges from close to neutral to positive. However, it is likely to be positive in the xylem-only feeding holoparasites of the genus Lathraea, which is closely related to Rhinanthus. Thus, water secretion by the hydathodes might be viewed as a physiological pre-adaptation in the evolution of holoparasitism in the rhinanthoid lineage of Orobanchaceae.  相似文献   

4.
Guttation was used as a non-destructive way to study the flowof water and mineral ions from the roots and compared with parallelmeasurements of root exudation. Guttation of the leaves of barley seedlings depends on age andon the culture solution. Best rates of guttation were obtainedwith the primary leaves of 6- to 7-day-old seedlings grown onfull mineral nutrient solution. The growing leaf tissue becomessaturated with K+ below 1.5 mM K+ in the medium, whereas K+concentration in the guttated fluid still increases furtheras K+ concentration in the medium is raised. At 3 mM K+ averagevalues of guttation were 1.4–2.4 mm3 h–1 per plantwith a K+ concentration of 10–20 mM; for exuding plantsthe flow was 4.2–7.6 mm3 h–1 per plant and K+ concentration35–55 mM. Abscisic acid (ABA) at 10–6 to 10–4 M 0–2h after addition to the root medium increased volume flow ofguttation and exudation and the amount of K+ exported. Threeh after addition of ABA both volume and amount of K+ were reduced.There was an ABA-dependent increase in water permeability (Lp)of exuding roots shortly after ABA addition. Later Lp was decreasedby 35 per cent and salt export by 60 per cent suggesting aneffect of ABA on salt transport to the xylem apart from itseffect on Lp. Benzyladenine (5 x 10–8 to 10–5 M)and kinetin (5 x 10–6 M) progressively reduced volumeflow and K+ export in guttation and exudation and reduced Lp. Guttation showed a qualitatively similar response to phytohormonesas found here and elsewhere using exuding roots. Hordeum vulgare L., barley, guttation, abscisic acid, cytokinins, benzyl adenine, kinetin  相似文献   

5.
The main driving force behind water transport in plants is the air's low water potential. In the presence of high humidity, the transpiration process is halted and water transport is mainly sustained by the root pressure. The surplus of water following the removal of essential components (e.g. salts) is excreted by the plant via guttation through the hydathodes. When guttation occurs, the plant surface is wetted. These are the conditions that will allow epiphytic living, motile bacteria to move and to eventually enter the plant's interior via the hydathodes. The question arose as to whether the plant has developed a protection mechanism against motile bacteria in the vicinity of the hydathodes. Such a protection mechanism could use the well known pathogenesis-related (PR) proteins. Indeed, an analysis of the guttation fluid using one- and two-dimensional electrophoresis showed a clustering of approximately 200 proteins, primarily with isoelectric points in the acidic pH. Proteins identified using electrospray ionization mass spectroscopic analysis and western blot analysis belong mostly to the family of PR-proteins suggesting a role in plant protection against invaders. The protein profile of the guttation fluid was remarkably modified by treating plants with methyl jasmonic acid suggesting that the protein composition of the guttation fluid is controlled by internal and/or external stimuli.  相似文献   

6.
Long-Distance Water Transport in Aquatic Plants   总被引:3,自引:0,他引:3       下载免费PDF全文
Pedersen O 《Plant physiology》1993,103(4):1369-1375
Acropetal mass flow of water is demonstrated in two submerged angiosperms, Lobelia dortmanna L. and Sparganium emersum Rehman by means of guttation measurements. Transpiration is absent in truly submerged plants, but the presence of guttation verifies that long-distance water transport takes place. Use of tritiated water showed that the water current arises from the roots, and the main flow of water is channeled to the youngest leaves. This was confirmed by measurement of guttation, which showed the highest rates in young leaves. Guttation rates were 10-fold larger in the youngest leaf of S. emersum (2.1 [mu]L leaf-1 h-1) compared with the youngest leaf of L. dortmanna (0.2 [mu]L leaf-1 h-1). This is probably due to profound species differences in the hydraulic conductance (2.7 x 10-17 m4 Pa-1 s-1 for S. emersum and 1.4 x 10-19 m4 Pa-1 s-1 for L. dortmanna). Estimates derived from the modified Hagen-Poiseuille equation showed that the maximum flow velocity in xylem vessels was 23 to 84 cm h-1, and the required root pressure to drive the flow was small compared to that commonly found in terrestrial plants. In S. emersum long-distance transport of water was shown to be dependent on energy conversion in the roots. The leaves ceased to guttate when the roots were cooled to 4[deg]C from the acclimatization level at 15[deg]C, whereas the guttation was stimulated when the temperature was increased to 25[deg]C. Also, the guttation rate decreased significantly when vanadate was added to the root medium. The observed water transport is probably a general phenomenon in submerged plants, where it can act as a translocation system for nutrients taken up from the rich root medium and thereby assure maximum growth.  相似文献   

7.
8.
The year 2001 saw an amazing progress in cytokinin studies. Ten years ago, cytokinin receptor genes and genes encoding cytokinin biosynthetic enzymes together with the corresponding proteins were identified in plants. These studies elucidated the molecular mechanism of cytokinin effects on the expression of cytokinin responsive genes and ultimately established the endogenous synthesis of cytokinins in plant cells, justifying their membership among plant hormones. The paper describes in short the edifying and sometimes paradoxical story of these fundamental and captivating discoveries.  相似文献   

9.
Control of plant cell division by two groups of phytohormones, auxins and cytokinins, has been known for half a century. Only recently, the biochemical mechanisms driving and controlling cell division in plants became clearer and similarities as well as differences between the cell cycles of plants, fungi and animals promoted its understanding. Most important elements are protein kinases which require small and specific regulatory proteins, the so called cyclins, for activation. The phytohormones, in particular the cytokinins apparently control synthesis and degradation of these cyclins, as oscillations of their concentrations accompany or even promote the transitions from one cycle phase to the next. The biochemical model presented here presents some details of phytohormone action in plant cell division.  相似文献   

10.
Growth and survival of Xanthomonas campestris pv. dieffenbachiae in guttation fluids (xylem sap exuded from leaf margins) of anthuriums were suppressed by several bacterial strains indigenous to leaves of various anthurium cultivars. Inhibition of growth was not observed in filter-sterilized guttation fluids and was restored to original levels only by reintroducing specific mixtures of bacteria into filter-sterilized guttation fluids. The inhibitory effect was related to the species in the bacterial community rather than to the total numbers of bacteria in the guttation fluids. One very effective bacterial community consisted of five species isolated from inhibitory guttation fluids of two susceptible anthurium cultivars. The individual strains in this community had no effect on the pathogen, but the mixture was inhibitory to X. campestris pv. dieffenbachiae in guttation fluids. The populations of the individual strains remained near the initial inoculum levels for at least 14 days. The effect of the five inhibitory strains on reducing disease in susceptible anthurium plants was tested by using a bioluminescent strain of X. campestris pv. dieffenbachiae to monitor the progression of disease in leaves nondestructively. Invasion of the pathogen through hydathodes at leaf margins was reduced by applying the strain mixture to the leaves. When the strain mixture was applied directly to wounds created on the leaf margins, the pathogen failed to invade through the wounds. This bacterial community has potential for biological control of anthurium blight.  相似文献   

11.
Soil microbes promote plant growth through several mechanisms such as secretion of chemical compounds including plant growth hormones. Among the phytohormones, auxins, ethylene, cytokinins, abscisic acid and gibberellins are the best understood compounds. Gibberellins were first isolated in 1935 from the fungus Gibberella fujikuroi and are synthesized by several soil microbes. The effect of gibberellins on plant growth and development has been studied, as has the biosynthesis pathways, enzymes, genes and their regulation. This review revisits the history of gibberellin research highlighting microbial gibberellins and their effects on plant health with an emphasis on the early discoveries and current advances that can find vital applications in agricultural practices.  相似文献   

12.
植物核糖体失活蛋白及其应用进展   总被引:1,自引:0,他引:1  
植物核糖体失活蛋白(ribosome-inactivating proteins,RIPs)是一类作用于真核细胞rRNA,并破坏其核糖体结构,抑制蛋白质生物合成的毒蛋白,主要应用在农业和医学领域。在农业领域,主要应用在转基因植物中,增强其抗病毒、抗菌以及抗虫活性。在医学领域,主用应用于抗肿瘤、抗艾滋病病毒等研究中。对核糖体失活蛋白的一些性质和应用进展进行综述。  相似文献   

13.
Transporters of ligands for essential metal ions in plants   总被引:5,自引:1,他引:5  
Essential metals are required for healthy plant growth but can be toxic when present in excess. Therefore plants have mechanisms of metal homeostasis which involve coordination of metal ion transporters for uptake, translocation and compartmentalization. However, very little metal in plants is thought to exist as free ions. A number of small, organic molecules have been implicated in metal ion homeostasis as metal ion ligands to facilitate uptake and transport of metal ions with low solubility and also as chelators implicated in sequestration for metal tolerance and storage. Ligands for a number of essential metals have been identified and proteins involved in the transport of these ligands and of metal-ligand complexes have been characterized. Here we review recent advances in understanding the role of mugineic acid, nicotianamine, organic acids (citrate and malate), histidine and phytate as ligands for iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and nickel (Ni) in plants, and the proteins identified as their transporters.  相似文献   

14.
细胞分裂素、赤霉素、脱落酸、叶绿素、萜类等类异戊二烯物质,是植物中广泛存在的一类代谢产物,在植物生长发育过程中起着非常重要的作用。一些萜类化合物作为药物的合成前体或有效的药用成分在工农业及医药生产上具有重要的经济价值。类异戊二烯物质主要通过甲羟戊酸代谢途径中的一系列酶催化合成,其中,3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase, HMGR)是该代谢途径中的第一个关键限速酶,能够将3-羟基-3-甲基戊二酰辅酶A转化成中间代谢产物甲羟戊酸。对植物HMGR基因的克隆、酶结构和功能分析、基因组织表达及调控等方面进行了综述,旨在为其在重要农作物的遗传改良、代谢产物工程植物创制以及植物亲缘关系分析中的应用等研究提供理论依据。  相似文献   

15.
The role of microbial signals in plant growth and development   总被引:1,自引:0,他引:1  
Plant growth and development involves a tight coordination of the spatial and temporal organization of cell division, cell expansion and cell differentiation. Orchestration of these events requires the exchange of signaling molecules between the root and shoot, which can be affected by both biotic and abiotic factors. The interactions that occur between plants and their associated microorganisms have long been of interest, as knowledge of these processes could lead to the development of novel agricultural applications. Plants produce a wide range of organic compounds including sugars, organic acids and vitamins, which can be used as nutrients or signals by microbial populations. On the other hand, microorganisms release phytohormones, small molecules or volatile compounds, which may act directly or indirectly to activate plant immunity or regulate plant growth and morphogenesis. In this review, we focus on recent developments in the identification of signals from free-living bacteria and fungi that interact with plants in a beneficial way. Evidence has accumulated indicating that classic plant signals such as auxins and cytokinins can be produced by microorganisms to efficiently colonize the root and modulate root system architecture. Other classes of signals, including N-acyl-L-homoserine lactones, which are used by bacteria for cell-to-cell communication, can be perceived by plants to modulate gene expression, metabolism and growth. Finally, we discuss the role played by volatile organic compounds released by certain plant growth-promoting rhizobacteria in plant immunity and developmental processes. The picture that emerges is one in which plants and microbes communicate themselves through transkingdom signaling systems involving classic and novel signals.Key words: Arabidopsis, alkamides, auxins, quorum-sensing, cytokinins  相似文献   

16.
Plant growth and development is influenced by mutual interactions among plant hormones. The five classical plant hormones are auxins, cytokinins, gibberellins, abscisic acid and ethylene. They are small diffusible molecules that easily penetrate between cells. In addition, newer classes of plant hormones have been identified such as brassinosteroids, jasmonic acid, salicylic acid and various small proteins or peptides. These hormones also play important roles in the regulation of plant growth and development. This review begins with a brief summary of the current findings on plant hormones. Based on this knowledge, a conceptual model about interactions among plant hormones is built so as to link and develop an understanding of the diverse functions of different plant hormones as a whole in plants.Key words: abscisic acid, auxin, brassinosteroids, cytokinins, ethylene, gibberellins, jasmonic acid, salicylic acid, plant peptide hormones  相似文献   

17.
Nucleobases and derivatives like cytokinins and caffeine are translocated in the plant vascular system. Transport studies in cultured Arabidopsis cells indicate that adenine and cytokinin are transported by a common H+-coupled high-affinity purine transport system. Transport properties are similar to that of Arabidopsis purine transporters AtPUP1 and 2. When expressed in yeast, AtPUP1 and 2 mediate energy-dependent high-affinity adenine uptake, whereas AtPUP3 activity was not detectable. Similar to the results from cell cultures, purine permeases (PUP) mediated uptake of adenine can be inhibited by cytokinins, indicating that cytokinins are transport substrates. Direct measurements demonstrate that AtPUP1 is capable of mediating uptake of radiolabeled trans-zeatin. Cytokinin uptake is strongly inhibited by adenine and isopentenyladenine but is poorly inhibited by 6-chloropurine. A number of physiological cytokinins including trans- and cis-zeatin are also efficient competitors for AtPUP2-mediated adenine uptake, suggesting that AtPUP2 is also able to mediate cytokinin transport. Furthermore, AtPUP1 mediates transport of caffeine and ribosylated purine derivatives in yeast. Promoter-reporter gene studies point towards AtPUP1 expression in the epithem of hydathodes and the stigma surface of siliques, suggesting a role in retrieval of cytokinins from xylem sap to prevent loss during guttation. The AtPUP2 promoter drives GUS reporter gene activity in the phloem of Arabidopsis leaves, indicating a role in long-distance transport of adenine and cytokinins. Promoter activity of AtPUP3 was only found in pollen. In summary, three closely related PUPs are differentially expressed in Arabidopsis and at least two PUPs have properties similar to the adenine and cytokinin transport system identified in Arabidopsis cell cultures.  相似文献   

18.
Cytokinins in plant senescence: From spray and pray to clone and play   总被引:1,自引:0,他引:1  
Three approaches have been used to investigate the inhibitory role of the cytokinin class of phytohormones in plant senescence: external application of cytokinins, measurement of endogenous cytokinin levels before and during senescence, and manipulation of endogenous cytokinin production in transgenic plants. In transgenic plant studies, endogenous cytokinin levels are manipulated by expression of IPT, a gene encoding isopentenyl transferase. Transgenic plants expressing IPT from a variety of promoters exhibit developmental and morphological alterations and often display retarded leaf senescence. A recently developed autoregulatory senescence-inhibition system targets cytokinin production quantitatively, spatially and temporally, and results in transgenic plants that exhibit significantly delayed senescence without abnormalities. These transgenic studies not only confirm the regulatory role of cytokinins in plant senescence, but also provide a way to manipulate senescence for potential agricultural applications.  相似文献   

19.
Sodium—A Functional Plant Nutrient   总被引:3,自引:0,他引:3  
Plant scientists usually classify plant mineral nutrients based on the concept of “essentiality” defined by Arnon and Stout as those elements necessary to complete the life cycle of a plant. Certain other elements such as Na have a ubiquitous presence in soils and waters and are widely taken up and utilized by plants, but are not considered as plant nutrients because they do not meet the strict definition of “essentiality.” Sodium has a very specific function in the concentration of carbon dioxide in a limited number of C4 plants and thus is essential to these plants, but this in itself is insufficient to generalize that Na is essential for higher plants. The unique set of roles that Na can play in plant metabolism suggests that the basic concept of what comprises a plant nutrient should be reexamined. We contend that the class of plant mineral nutrients should be comprised not only of those elements necessary for completing the life cycle, but also those elements which promote maximal biomass yield and/or which reduce the requirement (critical level) of an essential element. We suggest that nutrients functioning in this latter manner should be termed “functional nutrients.” Thus plant mineral nutrients would be comprised of two major groups, “essential nutrients” and “functional nutrients.” We present an array of evidence and arguments to support the classification of Na as a “functional nutrient,” including its requirement for maximal biomass growth for many plants and its demonstrated ability to replace K in a number of ways, such as being an osmoticium for cell enlargement and as an accompanying cation for long-distance transport. Although in this paper we have only attempted to make the case for Na being a “functional nutrient,” other elements such as Si and Se may also confirm to the proposed category of “functional nutrients.”  相似文献   

20.
The evolving functions of DNA methylation   总被引:3,自引:0,他引:3  
DNA methylation is an ancient process found in all domains of life. Although the enzymes that mediate methylation have remained highly conserved, DNA methylation has been adapted for a variety of uses throughout evolution, including defense against transposable elements and control of gene expression. Defects in DNA methylation are linked to human diseases, including cancer. Methylation has been lost several times in the course of animal and fungal evolution, thus limiting the opportunity for study in common model organisms. In the past decade, plants have emerged as a premier model system for genetic dissection of DNA methylation. A recent combination of plant genetics with powerful genomic approaches has led to a number of exciting discoveries and promises many more.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号