首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The growth of the foodborne pathogen Listeria monocytogenes can be controlled by nisin, an antimicrobial peptide. A spontaneous mutant of L. monocytogenes shows both resistance to nisin and increased acid sensitivity compared to the wild type. Changes in the cell membrane correlated with nisin resistance, but the mechanism for acid sensitivity appears unrelated. When hydrochloric or lactic acid is added to cultures, intracellular ATP levels drop significantly in the mutant (P < 0.01) compared to the results seen with the wild type. Characterization of the F(0)F(1) ATPase, which hydrolyzes ATP to pump protons from the cell cytoplasm, shows that the enzyme is more active in the mutant than in the wild type. These data support a model in which the increased activity of the mutant ATPase upon acid addition depletes the cells' supply of ATP, resulting in cell death.  相似文献   

2.
单核细胞增生李斯特菌(Listeria monocytogenes,简称单增李斯特菌)是重要的人畜共患食源性病原,在青贮饲料、发酵食品、宿主胃内以及巨噬细胞吞噬体内都会遭遇酸应激。该菌有多种抗酸应激系统,如F0F1-ATPase、谷氨酸脱羧酶(Glutamate decarboxylase system,GAD)、精氨酸脱亚胺酶(Arginine deiminase,ADI)、鲱氨酸脱亚胺酶(Agmatine deiminase,Ag DI)系统等。在环境pH(pHex)4.5条件下可维持其细胞内pH(pHi)稳态,在pHex 3.5时仍能存活;用温和酸应激(pHex 4.5)预处理单增李斯特菌,可以通过酸耐受反应(Acid tolerance response)提高其在致死性酸性环境中的存活率,这一过程受σB正调控,即σB激活可以保护单增李斯特菌应对多种环境应激。因此,σB可以作为新型抗菌药物的靶标。更为重要的是,弱酸性发酵食品要严格控制李斯特菌的污染,以降低消费者的感染风险。  相似文献   

3.
4.
Here we report that Caenorhabditis elegans nematodes fed Listeria monocytogenes die over the course of several days, as a consequence of an accumulation of bacteria in the worm intestine. Mutant strains previously shown to be important for virulence in mammalian models were also found to be attenuated in their virulence in C. elegans. However, ActA, which is required for actin-based intracellular motility, appears to be dispensable during infection of C. elegans, indicating that L. monocytogenes remains extracellular in C. elegans.  相似文献   

5.
Cold shock at 0 to 15°C for 1 to 3 h increased the thermal sensitivity of Listeria monocytogenes. In a model broth system, thermal death time at 60°C was reduced by up to 45% after L. monocytogenes Scott A was cold shocked for 3 h. The duration of the cold shock affected thermal tolerance more than did the magnitude of the temperature downshift. The Z values were 8.8°C for controls and 7.7°C for cold-shocked cells. The D values of cold-shocked cells did not return to control levels after incubation for 3 h at 28°C followed by heating at 60°C. Nine L. monocytogenes strains that were cold shocked for 3 h exhibited D60 values that were reduced by 13 to 37%. The D-value reduction was greatest in cold-shocked stationary-phase cells compared to cells from cultures in either the lag or exponential phases of growth. In addition, cold-shocked cells were more likely to be inactivated by a given heat treatment than nonshocked cells, which were more likely to experience sublethal injury. The D values of chloramphenicol-treated control cells and chloramphenicol-treated cold-shocked cells were no different from those of untreated cold-shocked cells, suggesting that cold shock suppresses synthesis of proteins responsible for heat protection. In related experiments, the D values of L. monocytogenes Scott A were decreased 25% on frankfurter skins and 15% in ultra-high temperature milk if the inoculated products were first cold shocked. Induction of increased thermal sensitivity in L. monocytogenes by thermal flux shows potential to become a practical and efficacious preventative control method.  相似文献   

6.
7.
Suspensions of a bioluminescent (luxAB) transformant of Listeria monocytogenes in pH 7.0 phosphate buffer were pressurised and the effect of the pressure treatment was monitored by plate counting. When the bacteria were suspended in NaCl- and nisin-free buffer the number of colony forming units (CFU) decreased by 3 and 6 log cycles after 300 MPA for 10 and 30 min, respectively. Supplementing the plating medium with 5% NaCl did not influence the colony forming capacity of non-pressurised cells, however, CFU of residual populations after respective treatments of 300 MPa for 10 and 30 min were reduced by a further 2 and 3.5 log cycles in case of salt containing plates. Nisin-addition to the plating medium caused less than one log unit decrease in the CFU of the non-pressurised population. However, the CFU of 10 min-pressurised sample was 4 log cycles less in the nisin-containing plates than in the nisin-free ones, whereas no colonies were formed in the nisin-containing plates even when 1 ml was inoculated from the originally 10(10) CFU/ml population after 300 MPa for 30 min. The luciferase activities (bioluminescence intensities) decreased concomitant with the reduction of the viable cell counts, however, they were approx. 0.6-0.8 log units less in the presence of 5% NaCl in the pressurised suspension than those expected from the previously established linear correlation between the logarithmic light outputs and the logarithmic viable cell counts.  相似文献   

8.
In contrast to the slow rate of depolymerization of pure actin in vitro, populations of actin filaments in vivo turn over rapidly. Therefore, the rate of actin depolymerization must be accelerated by one or more factors in the cell. Since the actin dynamics in Listeria monocytogenes tails bear many similarities to those in the lamellipodia of moving cells, we have used Listeria as a model system to isolate factors required for regulating the rapid actin filament turnover involved in cell migration. Using a cell-free Xenopus egg extract system to reproduce the Listeria movement seen in a cell, we depleted candidate depolymerizing proteins and analyzed the effect that their removal had on the morphology of Listeria tails. Immunodepletion of Xenopus actin depolymerizing factor (ADF)/cofilin (XAC) from Xenopus egg extracts resulted in Listeria tails that were approximately five times longer than the tails from undepleted extracts. Depletion of XAC did not affect the tail assembly rate, suggesting that the increased tail length was caused by an inhibition of actin filament depolymerization. Immunodepletion of Xenopus gelsolin had no effect on either tail length or assembly rate. Addition of recombinant wild-type XAC or chick ADF protein to XAC-depleted extracts restored the tail length to that of control extracts, while addition of mutant ADF S3E that mimics the phosphorylated, inactive form of ADF did not reduce the tail length. Addition of excess wild-type XAC to Xenopus egg extracts reduced the length of Listeria tails to a limited extent. These observations show that XAC but not gelsolin is essential for depolymerizing actin filaments that rapidly turn over in Xenopus extracts. We also show that while the depolymerizing activities of XAC and Xenopus extract are effective at depolymerizing normal filaments containing ADP, they are unable to completely depolymerize actin filaments containing AMPPNP, a slowly hydrolyzible ATP analog. This observation suggests that the substrate for XAC is the ADP-bound subunit of actin and that the lifetime of a filament is controlled by its nucleotide content.  相似文献   

9.
10.
11.
An insertion mutant of gtcA, responsible for serotype-specific glycosylation of the cell wall teichoic acid in serotype 4b strains of Listeria monocytogenes, was also resistant to both Listeria genus- and serotype 4b-specific phages. The sugar substituents on teichoic acid appeared essential for the adsorption of phages A500 (serotype 4b specific) and A511 (Listeria genus specific) to serotype 4b L. monocytogenes.  相似文献   

12.
13.
14.
Regulation of iron homeostasis in many pathogens is principally mediated by the ferric uptake regulator, Fur. Since acquisition of iron from the host is essential for the intracellular pathogen Listeria monocytogenes, we predicted the existence of Fur-regulated systems that support infection. We examined the contribution of nine Fur-regulated loci to the pathogenicity of L. monocytogenes in a murine model of infection. While mutating the majority of the genes failed to affect virulence, three mutants exhibited a significantly compromised virulence potential. Most striking was the role of the membrane protein we designate FrvA (Fur regulated virulence factor A; encoded by frvA [lmo0641]), which is absolutely required for the systemic phase of infection in mice and also for virulence in an alternative infection model, the Wax Moth Galleria mellonella. Further analysis of the ΔfrvA mutant revealed poor growth in iron deficient media and inhibition of growth by micromolar concentrations of haem or haemoglobin, a phenotype which may contribute to the attenuated growth of this mutant during infection. Uptake studies indicated that the ΔfrvA mutant is unaffected in the uptake of ferric citrate but demonstrates a significant increase in uptake of haem and haemin. The data suggest a potential role for FrvA as a haem exporter that functions, at least in part, to protect the cell against the potential toxicity of free haem.  相似文献   

15.
16.
Media Selective for Listeria monocytogenes   总被引:3,自引:3,他引:0  
  相似文献   

17.
Media selective for Listeria monocytogenes   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
Nineteen Listeria monocytogenes strains were characterized by automated ribotyping, pulsed-field gel electrophoresis, and plasmid profiling to determine the relationship between genotype and sanitizer resistance. Isolates within a ribogroup had a consistent sensitivity or resistance phenotype except for ribogroup C isolates. All isolates with resistance phenotypes harbored two plasmids. The sensitivity of L. monocytogenes strains to quaternary ammonium compounds (QACs) was correlated with sensitivity to sanitizers and antibiotics with other modes of action. All isolates tested contained the mdrL gene, which encodes an efflux pump that confers resistance to QACs and is both chromosome and plasmid borne.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号