首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TIM17:23 complex on the mitochondrial inner membrane is responsible for import of the majority of mitochondrial proteins in plants. In Arabidopsis, Tim17 and Tim23 belong to a large gene family consisting of 16 members termed the Preprotein and Amino acid transporters (PRAT). Recently, two members of this protein family, Tim23-2 and the Complex I subunit B14.7, have been shown to assemble into both Complex I of the respiratory chain and the TIM17:23 complex (Wang et al., 2012), adding to other examples of links between respiratory and protein import complexes. These associations provide a mechanism to coordinate mitochondrial activity and biogenesis.  相似文献   

2.
3.
4.
NADH-ubiquinone oxidoreductase (Complex I, EC 1.6.5.3) is the largest complex of the mitochondrial respiratory chain. In eukaryotes, it is composed of more than 40 subunits that are encoded by both the nuclear and mitochondrial genomes. Plant Complex I differs from the enzyme described in other eukaryotes, most notably due to the large number of plant-specific subunits in the membrane arm of the complex. The elucidation of the assembly pathway of Complex I has been a long-standing research aim in cellular biochemistry. We report the study of Arabidopsis mutants in Complex I subunits using a combination of Blue-Native PAGE and immunodetection to identify stable subcomplexes containing Complex I components, along with mass spectrometry analysis of Complex I components in membrane fractions and two-dimensional diagonal Tricine SDS-PAGE to study the composition of the largest subcomplex. Four subcomplexes of the membrane arm of Complex I with apparent molecular masses of 200, 400, 450, and 650 kDa were observed. We propose a working model for the assembly of the membrane arm of Complex I in plants and assign putative roles during the assembly process for two of the subunits studied.  相似文献   

5.
Arabidopsis mitochondria are predicted to contain three acyl carrier proteins (ACPs). These small proteins are involved in fatty acid and lipoic acid synthesis in other organisms and have been previously reported to be subunits of respiratory Complex I in mitochondria in mammals, fungi and plants. Recently, the mammalian mitochondrial ACP (mtACP) has been shown to be largely a soluble matrix protein but also to be minimally associated with Complex I (Cronan et al. 2005), consistent with its involvement in synthesis of lipoic acid for TCA cycle decarboxylating dehydrogenases in the matrix but contrary to earlier claims it was primarily a Complex I subunit. We have investigated the localization of the ACPs in Arabidopsis mitochondria. Evidence is presented that mtACP1 and mtACP2 dominate the ACP composition in Arabidopsis mitochondria, and both are present in the mitochondrial matrix rather than in the membrane. No significant amounts of mtACPs were detected in Complex I isolated by blue native gel electrophoresis, rather mtACPs were detected at low molecular mass in the soluble fraction, showing that in A. thaliana mtACPs are predominately free soluble matrix proteins.  相似文献   

6.
Mitochondrial NADH dehydrogenase (complex I) of plants includes quite a number of plant-specific subunits, some of which exhibit sequence similarity to bacterial gamma-carbonic anhydrases. A homozygous Arabidopsis knockout mutant carrying a T-DNA insertion in a gene encoding one of these subunits (At1g47260) was generated to investigate its physiological role. Isolation of mitochondria and separation of mitochondrial protein complexes by Blue-native polyacrylamide gel electrophoresis or sucrose gradient ultracentrifugation revealed drastically reduced complex I levels. Furthermore, the mitochondrial I + III2 supercomplex was very much reduced in mutant plants. Remaining complex I had normal molecular mass, suggesting substitution of the At1g47260 protein by one or several of the structurally related subunits of this respiratory protein complex. Immune-blotting experiments using polyclonal antibodies directed against the At1g47260 protein indicated its presence within complex I, the I + III2 supercomplex and smaller protein complexes, which possibly represent subcomplexes of complex I. Changes within the mitochondrial proteome of mutant cells were systematically monitored by fluorescence difference gel electrophoresis using 2D Blue-native/SDS and 2D isoelectric focussing/SDS polyacrylamide gel electrophoresis. Complex I subunits are largely absent within the mitochondrial proteome. Further mitochondrial proteins are reduced in mutant plants, like mitochondrial ferredoxin, others are increased, like formate dehydrogenase. Development of mutant plants was normal under standard growth conditions. However, a suspension cell culture generated from mutant plants exhibited clearly reduced growth rates and respiration. In summary, At1g47260 is important for complex I assembly in plant mitochondria and respiration. A role of At1g47260 in mitochondrial one-carbon metabolism is supported by micro-array analyses.  相似文献   

7.
Heat stress can negatively affect crop productivity. One way in which plants attempt to alleviate the effects of heat stress is to induce the expression of genes encoding heat shock proteins (HSPs), including small HSPs (sHSPs). We produced transgenic lines of Arabidopsis thaliana expressing a transgene encoding a maize mitochondrial sHSP, ZmHSP22. The transgene, under the control of the cauliflower mosaic virus 35S promoter, is constitutively highly expressed in these lines. As demonstrated by confocal immunofluorescence microscopy and analyses of isolated mitochondria, ZmHSP22 is directed to the mitochondria of Arabidopsis and is processed into the mature form. These transgenic lines demonstrated altered expression of nuclear genes encoding the endogenous mitochondrial sHSP, AtHSP23.6, chloroplast localized AtHSP25.3, class I cytosolic AtHSP17.4, cytosolic AtHSP70-1 and chloroplast localized AtHSP70-6, but not cytosolic AtHSP70-15, following exposure to heat stress. This suggests that the expression of HSPs can be affected by heat-induced mitochondrial retrograde regulation. Three-week-old plants from the transgenic Arabidopsis lines expressing ZmHSP22 have increased thermotolerance, as measured by the maintenance of higher leaf mass following successive days with short periods of heat stress.  相似文献   

8.
Arabidopsis (Arabidopsis thaliana) mutants lacking a functional ERA1 gene, which encodes the beta-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects that establish roles for protein prenylation in abscisic acid (ABA) signaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsis GGB gene, which encodes the beta-subunit of protein geranylgeranyltransferase type I (PGGT I). Stomatal apertures of ggb plants were smaller than those of wild-type plants at all concentrations of ABA tested, suggesting that PGGT I negatively regulates ABA signaling in guard cells. However, germination of ggb seeds in response to ABA was similar to the wild type. Lateral root formation in response to exogenous auxin was increased in ggb seedlings compared to the wild type, but no change in auxin inhibition of primary root growth was observed, suggesting that PGGT I is specifically involved in negative regulation of auxin-induced lateral root initiation. Unlike era1 mutants, ggb mutants exhibited no obvious developmental phenotypes. However, era1 ggb double mutants exhibited more severe developmental phenotypes than era1 mutants and were indistinguishable from plp mutants lacking the shared alpha-subunit of PFT and PGGT I. Furthermore, overexpression of GGB in transgenic era1 plants partially suppressed the era1 phenotype, suggesting that the relatively weak phenotype of era1 plants is due to partial redundancy between PFT and PGGT I. These results are discussed in the context of Arabidopsis proteins that are putative substrates of PGGT I.  相似文献   

9.
The complexes of the electron transport chain associate into large macromolecular assemblies, which are believed to facilitate efficient electron flow. We have identified a conserved mitochondrial protein, named respiratory supercomplex factor 1 (Rcf1-Yml030w), that is required for the normal assembly of respiratory supercomplexes. We demonstrate that Rcf1 stably and independently associates with both Complex III and Complex IV of the electron transport chain. Deletion of the RCF1 gene caused impaired respiration, probably as a result of destabilization of respiratory supercomplexes. Consistent with the hypothetical function of these respiratory assemblies, loss of RCF1 caused elevated mitochondrial oxidative stress and damage. Finally, we show that knockdown of HIG2A, a mammalian homolog of RCF1, causes impaired supercomplex formation. We suggest that Rcf1 is a member of an evolutionarily conserved protein family that acts to promote respiratory supercomplex assembly and activity.  相似文献   

10.
11.
The threat of global warming makes uncovering mechanisms of plant tolerance to long-term moderate heat stress particularly important. We previously reported that Arabidopsis (Arabidopsis thaliana) plants lacking mitochondrial proteases FTSH4 or OMA1 suffer phenotypic changes under long-term stress of 30°C, while their growth at 22°C is not affected. Here we found that these morphological and developmental changes are associated with increased accumulation of insoluble mitochondrial protein aggregates that consist mainly of small heat-shock proteins (sHSPs). Greater accumulation of sHSPs in ftsh4 than oma1 corresponds with more severe phenotypic abnormalities. We showed that the proteolytic activity of FTSH4, and to a lesser extent of OMA1, as well as the chaperone function of FTSH4, is crucial for protecting mitochondrial proteins against aggregation. We demonstrated that HSP23.6 and NADH dehydrogenase subunit 9 present in aggregates are proteolytic substrates of FTSH4, and this form of HSP23.6 is also a substrate of OMA1 protease. In addition, we found that the activity of FTSH4 plays an important role during recovery from elevated to optimal temperatures. Isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analyses, along with identification of aggregation-prone proteins, implicated mitochondrial pathways affected by protein aggregation (e.g. assembly of complex I) and revealed that the mitochondrial proteomes of ftsh4 and oma1 plants are similarly adapted to long-term moderate heat stress. Overall, our data indicate that both FTSH4 and OMA1 increase the tolerance of plants to long-term moderate heat stress by reducing detergent-tolerant mitochondrial protein aggregation.

Mitochondrial proteases prevent accumulation of insoluble protein aggregates and protect Arabidopsis plants against long-term moderate heat stress.  相似文献   

12.
13.
All present‐day mitochondria originate from a single endosymbiotic event that gave rise to the last eukaryotic common ancestor more than a billion years ago. However, to date, many aspects of mitochondrial evolution have remained unresolved. Comparative genomics and proteomics have revealed a complex evolutionary origin for many mitochondrial components. To understand the evolution of the respiratory chain, we have examined both the components and the mechanisms of the assembly pathway of complex I. Complex I represents the first enzyme in the respiratory chain, and complex I deficiencies have dramatic consequences in both animals and plants. The complex is located in the mitochondrial inner membrane and possesses two arms: one embedded in the inner membrane and one protruding in the matrix. Here, we describe the assembly pathway of complex I in the model plant Arabidopsis thaliana. Using a proteomics approach called complexome profiling, we have resolved the different steps in the assembly process in plants. We propose a model for the stepwise assembly of complex I, including every subunit. We then compare this pathway with the corresponding pathway in humans and find that complex I assembly in plants follows a different, and likely ancestral, pathway compared with the one in humans. We show that the main evolutionary changes in complex I structure and assembly in humans occurred at the level of the membrane arm, whereas the matrix arm remained rather conserved.  相似文献   

14.
Mitochondrial alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, catalyzes the energy-wasteful cyanide (CN)-resistant respiration. Although it has been demonstrated that leaf AOX is up-regulated under high-light (HL) conditions, the in vivo mechanism of AOX up-regulation by light is still unknown. In the present study, we examined whether the photo-oxidative stress in the chloroplast modulates mitochondrial respiratory properties, especially the AOX capacity, using Arabidopsis leaf-variegated mutant yellow variegated 2 (var2) and exposing plants to HL. var2 mutants lack FtsH2 metalloprotease required for the repair of damaged PSII. Indeed, var2-1 suffered from photo-oxidative stress even before the HL treatments. While the activities of tricarboxylic acid cycle enzymes and cytochrome c oxidase in var2-1 were almost identical to those in the wild type, the amount of AOX protein and the CN-resistant respiration rate were higher in var2-1. Real-time PCR analysis revealed that HL treatment induced the expression of some energy-dissipating respiratory genes, including AOX1a, NDB2 and UCP5, more strongly in var2-1. Western blotting using var2-1 leaf extracts specific to green or white sectors, containing functional or non-functional photosynthetic apparatus, respectively, revealed that more AOX protein was induced in the green sectors by the HL treatment. These results indicate that photo-oxidative stress by excess light is involved in the regulation of respiratory gene expression and the modulation of respiratory properties, especially the AOX up-regulation.  相似文献   

15.
16.
High soil sodium (Na) is a common stress in natural and agricultural systems. Roots are usually the first tissues exposed to Na stress and Na stress-related impairment of mitochondrial function is likely to be particularly important in roots. However, neither the effects of NaCl on mitochondrial function, nor its protection by several potential adaptive mechanisms, have been well studied. This study investigated the effects of NaCl stress on maize (Zea mays) mitochondrial electron transport and its relative protection by osmoprotectants (proline, betaine, and sucrose), antioxidants (ascorbate, glutathione, and alpha-tocopherol), antioxidant enzymes (catalase and Cu/Zn-superoxide dismutase), and mitochondrial small heat shock proteins (sHsps). We demonstrate that Complex I electron transport is protected by antioxidants and sHsps, but not osmoprotectants, whereas Complex II is protected only by low concentrations of proline and betaine. These results indicate that NaCl stress damaged Complex I via oxidative stress and suggests that sHsps may protect Complex I as antioxidants, but NaCl damaged Complex II directly. This is the first study to demonstrate that NaCl stress differentially affects Complex I and II in plants and that protection of Complex I and II during NaCl stress is achieved by different mechanisms.  相似文献   

17.
Cytokinin signaling in Arabidopsis thaliana utilizes a multi-step two-component signaling (TCS) system comprised of sensor histidine kinases (AHKs), histidine phosphotransfer proteins (AHPs), and response regulators (ARRs). Recent studies have suggested that the cytokinin TCS system is involved in a variety of other signaling and metabolic pathways. To further explore a potential function of the cytokinin TCS in the Arabidopsis dehydration stress response, we investigated the expression of all type-A ARR genes and a type-C ARR, ARR22, in both wild type and ahk single, double, and triple mutants in response to dehydration compared to cytokinin as well as dehydration tolerance of ahk mutants. We found that drought significantly induced the expression of a subset of ARR genes, ARR5, ARR7, ARR15, and ARR22. The results of expression analyses in ahk single, double, and triple mutants demonstrated that the cytokinin receptors AHK2 and AHK3 are redundantly involved in dehydration-inducible expression of ARR7, but not that of ARR5, ARR15, or ARR22. Dehydration tolerance assays showed that ahk2 and ahk3 single mutants exhibited enhanced dehydration tolerance compared with that of wild-type plants and ahk4 mutants, and that ahk2 ahk3 double mutants exhibited stronger drought tolerance than that of ahk3 ahk4, which exhibited more enhanced drought tolerance than that of wild-type plants and ahk single mutants. Taken together, these results demonstrate that while the cytokinin receptors AHK2 and AHK3 are critically involved in the dehydration tolerance response, both cytokinin receptor-dependent pathway and receptor-independent pathway occur in the dehydration response regulating ARR gene expression. In addition, preincubating ahk2, ahk3, ahk4, and the wild-type plants with cytokinin induced enhanced dehydration stress tolerance in these plants, demonstrating that cytokinins are involved in regulating plant response to dehydration stress.  相似文献   

18.
19.
Mitochondrial genomes (mtDNAs) in angiosperms contain numerous group II-type introns that reside mainly within protein-coding genes that are required for organellar genome expression and respiration. While splicing of group II introns in non-plant systems is facilitated by proteins encoded within the introns themselves (maturases), the mitochondrial introns in plants have diverged and have lost the vast majority of their intron-encoded ORFs. Only a single maturase gene (matR) is retained in plant mtDNAs, but its role(s) in the splicing of mitochondrial introns is currently unknown. In addition to matR, plants also harbor four nuclear maturase genes (nMat 1 to 4) encoding mitochondrial proteins that are expected to act in the splicing of group II introns. Recently, we established the role of one of these proteins, nMAT2, in the splicing of several mitochondrial introns in Arabidopsis. Here, we show that nMAT1 is required for trans-splicing of nad1 intron 1 and also functions in cis-splicing of nad2 intron 1 and nad4 intron 2. Homozygous nMat1 plants show retarded growth and developmental phenotypes, modified respiration activities and altered stress responses that are tightly correlated with mitochondrial complex I defects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号