首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationships among species assigned to the yeast genera Pichia, Issatchenkia and Williopsis , which are characterized by the ubiquinone CoQ-7 and inability to utilize methanol, were phylogenetically analyzed from nucleotide sequence divergence in the genes coding for large and small subunit rRNAs and for translation elongation factor-1α. From this analysis, the species separated into five clades. Species of Issatchenkia are members of the Pichia membranifaciens clade and are proposed for transfer to Pichia . Pichia dryadoides and Pichia quercuum are basal members of the genus Starmera . Williopsis species are dispersed among hat-spored taxa in each of the remaining three clades, which are proposed as the new genera Barnettozyma, Lindnera and Wickerhamomyces . Lineages previously classified as varieties of Pichia kluyveri , ' Issatchenkia ' scutulata, Starmera amethionina and ' Williopsis ' saturnus are elevated to species rank based on sequence comparisons.  相似文献   

2.
To more confidently assess phylogenetic relationships among astome ciliates, we obtained small subunit (SSU) rRNA sequences from nine species distributed in six genera and three families: Almophrya bivacuolata, Eudrilophrya complanata, Metaracoelophrya sp. 1, Metaracoelophrya sp. 2, Metaracoelophrya intermedia, Metaradiophrya sp., Njinella prolifera, Paraclausilocola constricta n. gen., n. sp., and Paraclausilocola elongata n. sp. The two new species in the proposed new clausilocolid genus Paraclausilocola n. gen. are astomes with no attachment apparatus, two files of contractile vacuoles, and an arc-like anterior suture that has differentiations of thigmotactic ciliature on the anterior ends of the left kineties of the upper surface. Phylogenetic analyses were undertaken using neighbor-joining, Bayesian inference, maximum likelihood, and maximum parsimony. The nine species of astomes formed a strongly supported clade, showing the subclass Astomatia to be monophyletic and a weakly supported sister clade to the scuticociliates. There were two strongly supported clades within the astomes. However, genera assigned to the same family were found in different clades, and genera assigned to the same order were found in both clades. Thus, astome taxa appear to be paraphyletic when morphology is used to assign species to genera.  相似文献   

3.
Phylogeny of the genus Pythium is analyzed based on sequences of the large subunit ribosomal DNA D1/D2 region and cytochrome oxidase II gene region of Pythium isolates and comprehensive species of related taxa belonging to the Oomycetes. The phylogenetic trees show that the genus Pythium is a highly divergent group and divided into five well- or moderately supported monophyletic clades. Each clade is characterized by sporangial morphology such as globose, ovoid, elongated, or filamentous shapes. Based on phylogeny and morphology, the genus Pythium (s. str.) is emended, and four new genera, Ovatisporangium, Globisporangium, Elongisporangium, and Pilasporangium, are described and segregated from Pythium s. lato.  相似文献   

4.
The phylogenetic relationship among Geosmithia argillacea, Talaromyces emersonii, Talaromyces byssochlamydoides and other members of the Trichocomaceae was studied using partial RPB2 (RNA polymerase II gene, encoding the second largest protein subunit), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences. The results showed that these species form a distinct clade within the Trichocomaceae and Trichocoma paradoxa is phylogenetically most closely related. Based on phenotypic and physiological characters and molecular data, we propose Rasamsonia gen. nov. to accommodate these species. This new genus is distinct from other genera of the Trichocomaceae in being thermotolerant or thermophilic and having conidiophores with distinctly rough walled stipes, olive-brown conidia and ascomata, if present, with a scanty covering. Species within the genus Rasamsonia were distinguished using a combination of phenotypic characters, extrolite patterns, ITS and partial calmodulin and β-tubulin sequences. Rasamsonia brevistipitata sp. nov. is described and five new combinations are proposed.  相似文献   

5.
6.
7.
Aquatic hyphomycetes play a key role in decomposition of submerged organic matter and stream ecosystem functioning. We examined the phylogenetic relationships among various genera of aquatic hyphomycetes belonging to the Leotiomycetes (Ascomycota) using sequences of internal transcribed spacer (ITS) and large subunit (LSU) regions of rDNA generated from 42 pure cultures including 19 ex-types. These new sequence data were analyzed together with additional sequences from 36 aquatic hyphomycetes and 60 related fungi obtained from GenBank. Aquatic hyphomycetes, characterized by their tetraradiate or sigmoid conidia, were scattered in nine supported clades within the Helotiales (Leotiomycetes). Tricladium, Lemonniera, Articulospora, Anguillospora, Varicosporium, Filosporella, and Flagellospora are not monophyletic, with species from the same genus distributed among several major clades. The Gyoerffyella clade and the Hymenoscyphus clade accommodated species from eight and six different genera, respectively. Thirteen aquatic hyphomycete taxa were grouped in the Leotia-Bulgaria clade while twelve species clustered within the Hymenoscyphus clade along with several amphibious ascomycetes. Species of Filosporella and some species from four other aquatic genera were placed in the Ascocoryne-Hydrocina clade. It is evident that many aquatic hyphomycetes have relatives of terrestrial origin. Adaptation to colonize the aquatic environment has evolved independently in multiple phylogenetic lineages within the Leotiomycetes.  相似文献   

8.
A new genus of Neotropical Satyrinae butterflies, Viloriodes Pyrcz & Espeland gen. n. is described in the Pedaliodes Butler complex comprising 11–13 genera and more than 400 species. Support for the new genus is provided by a phylogenetic analysis based on target enrichment (TE) data including 618 nuclear loci with a total of 248,940 nucleotides, and the mitochondrial gene cytochrome oxidase subunit 1 (COI). Five species, whose DNA sequences were obtained by TE during this study, form a strongly supported clade sister to the large clade comprising Pedaliodes and four other genera. Complementary COI analysis confirms the monophyly of Viloriodes gen. n., with the above five plus eight other species clustering in highly supported clades in both Bayesian Inference and Maximum Likelihood analyses, and a TE + COI concatenated tree. Based on molecular and morphological data, 30 species are assigned to Viloriodes gen. n. The new genus can be recognized by a set of subtle morphological characteristics of colour patterns and male and female genitalia. An analysis of divergence times indicates that Viloriodes gen. n. and Steromapedaliodes Forster separated around 5.9 Mya. Viloriodes gen. n. has a wider geographic distribution than any other genus of the Pedaliodes complex, being found from central Mexico to northern Argentina and to the Guyana Shield, typically occurring at lower elevations than Pedaliodes.  相似文献   

9.
Species of prorocentroid dinoflagellates are common in marine benthic sediment and epibenthic habitats, as well as in planktonic habitats. Marine planktonic prorocentroids typically possess a small spine in the apical region. In this study, we describe a new, potentially widely distributed benthic species of Prorocentrum, P. fukuyoi sp. nov., from tidal sand habitats in several sites in Australia and from central Japan. This species was found to possess an apical spine or flange and was sister species to P. emarginatum. We analyzed the phylogeny of the group including this new species, based on large subunit (LSU) rDNA sequences. The genus contained a high level of divergence in LSU rDNA, in some cases among sister taxa. P. fukuyoi and P. emarginatum were found to be most closely related to a clade of generally planktonic taxa. Several morphological features may constitute more informative synapomorphies than habitat in distinguishing clades of prorocentroid species.  相似文献   

10.
Based on morphological characteristics and molecular phylogeny, we reclassified Cordyceps cuboidea and allied species C. alboperitheciata, C. prolifica, and Ophiocordyceps ryogamiensis. We investigated their teleomorph-anamorph relationships and revealed that these four species have Hirsutella-like anamorphs with morphological differences between them. By analyzing their molecular phylogeny, inferred from DNA sequences of internal transcribed spacer (ITS) and large subunit (LSU) D1/D2 region of rDNA, they were separated into four close-knit clades. Although C. prolifica and O. ryogamiensis formed their own clades, isolates of C. cuboidea separated into two clades, i.e., a true C. cuboidea clade and one resembling a new species, the O. paracuboidea clade. The latter two species are distinguished by the fruiting region of the stroma. In addition, C. alboperitheciata is regarded as a synonym of C. cuboidea. From the morphology, teleomorph-anamorph relationships, and molecular phylogeny, we concluded these species should be assigned to the genus Ophiocordyceps.  相似文献   

11.
Molecular phylogenetic studies were carried out based on ITS-5.8S rDNA, the D1–D2 region of the large subunit rRNA gene, RPB2, and combined data of D1–D2 and RPB2 as well as these three genes on 36 species among 7 genera for Lachnum and allied genera in the family Hyaloscyphaceae. In the combined data of all three regions, seven strongly supported clades were obtained. The same clades were also recognized in most of the trees based on each gene, and the combined data of D1–D2 and RPB2, although some of them were not strongly supported. Four clades represented Albotricha, Brunnipila, Incrucipulum, and Lachnellula, respectively, whereas Lachnum was distributed to the remaining three clades. The molecular phylogenies strongly supported a group of species with granulate hairs, and we suggest the concept of Lachnaceae should be restricted to these species. Based on the molecular phylogenetic analysis, three new combinations—Incrucipulum longispineum, I. radiatum, and Lachnellula pulverulentum from Lachnum—are proposed.  相似文献   

12.
Members of the family Brachionidae are free-living organisms that range in size from 170 to 250 microns. They comprise part of the zooplankton in freshwater and marine systems worldwide. Morphologically, members of the family are characterized by a single piece loricated body without furrows, grooves, sulci or dorsal head shields, and a malleate trophi. Differences in these structures have been traditionally used to recognize 217 species that are classified into seven genera. However, the validity of the species, Plationus patulus, P. patulus macracanthus P. polyacanthus, and P. felicitas have been confused because they were alternatively assigned in Brachionus or Platyias, when considering only morphological and ecological characters. Based on scanning electron microscope (SEM) images of the trophi, these taxa were assigned in a new genus, Plationus. In this study, we examined the systematic position of P. patulus and P. patulus macracanthus using DNA sequences of two genes: the cytochrome oxidase subunit 1 (cox1) and domains D2 and D3 of the large subunit of the nuclear ribosomal RNA (LSU). In addition, the cox1 and LSU sequences representing five genera of Brachionidae (Anuraeopsis, Brachionus, Keratella, Plationus, and Platyias) plus four species of three families from the order Ploima were used as the outgroup. The maximum likelihood (ML) analyses were conducted for each individual gene as well as for the combined (cox1 + LSU) data set. The ML tree from the combined data set yielded the family Brachionidae as a monophyletic group with weak bootstrap support (<50%). Five main clades in this tree had high (>85%) bootstrap support. The first clade was composed of three populations of P. patulus + P. patulus macracanthus. The second clade was composed of a single species of Platyias. The third clade was composed of six species of Brachionus. The fourth clade included a single species of the genus Anuraeopsis, and the fifth clade was composed of three species of the genus Keratella. The genetic divergence between Plationus and Platyias ranged from 18.4 to 19.2% for cox1, and from 4.5 to 4.9% for LSU, and between Brachionus and Plationus, it ranged from 16.9 to 23.1% (cox1), and from 7.3 to 9.1% (LSU). Morphological evidence, the amount of genetic divergence, the systematic position of Plationus within the family Brachionidae, and the position of Plationus as a sister group of Brachionus and Platyias support the validity of Plationus patulus and P. patulus macracanthus into the genus Plationus.  相似文献   

13.
Species in the genus Bugula are globally distributed. They are most abundant in tropical and temperate shallow waters, but representatives are found in polar regions. Seven species occur in the Arctic and one in the Antarctic and species are represented in continental shelf or greater depths as well. The main characters used to define the genus include bird's head pedunculate avicularia, erect colonies, embryos brooded in globular ooecia and branches comprising two or more series of zooids. Skeletal morphology has been the primary source of taxonomic information for many calcified bryozoan groups, including the Buguloidea. Several morphological characters, however, have been suggested to be homoplastic at distinct taxonomic levels, in the light of molecular phylogenies. Our purpose was to investigate the phylogenetic interrelationships of the genus Bugula, based on molecular phylogenetics and morphology. A Bayesian molecular phylogeny was constructed using original and previously published sequences of the mitochondrial genes cytochrome c oxidase subunit 1 (COI) and the large ribosomal RNA subunit (16S). Morphological characteristics from scanning electron and light microscopy were used to confirm the clades detected by the molecular phylogeny. Our results suggest that the genus is composed of four clades, for which we provide diagnoses: Bugula sensu stricto (30 species), Bugulina (24 species), Crisularia (23 species) and the monotypic Virididentula gen. n. Ten species could not be assigned to any of those genera, so they remain as genus incertae sedis. Our findings highlight the importance of using molecular phylogenies in association with morphological characters in systematic revisions of bryozoan taxa.  相似文献   

14.
A Bayesian analysis, utilizing a combined data set developed from the small subunit (SSU) and large subunit (LSU) rDNA gene sequences, was used to resolve relationships and clarify generic boundaries among 84 strains of plastid‐containing euglenophytes representing 11 genera. The analysis produced a tree with three major clades: a Phacus and Lepocinlis clade, a Discoplastis clade, and a Euglena, Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade. The majority of the species in the genus Euglena formed a well‐supported clade, but two species formed a separate clade near the base of the tree. A new genus, Discoplastis, was erected to accommodate these taxa, thus making the genus Euglena monophyletic. The analysis also supported the monophyly of Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena, which formed two subclades sister to the Euglena clade. Colacium, Trachelomonas, and Strombomonas, all of which produce copious amounts of mucilage to form loricas or mucilaginous stalks, formed a well‐supported lineage. Our analysis supported retaining Strombomonas and Trachelomonas as separate genera. Monomorphina and Cryptoglena formed two well‐supported clades that were sister to the Colacium, Trachelomonas, and Strombomonas clade. Phacus and Lepocinclis, both of which have numerous small discoid chloroplasts without pyrenoids and lack peristaltic euglenoid movement (metaboly), formed a well‐supported monophyletic lineage that was sister to the larger Euglena through Cryptoglena containing clade. This study demonstrated that increased taxon sampling, multiple genes, and combined data sets provided increased support for internal nodes on the euglenoid phylogenetic tree and resolved relationships among the major genera in the photosynthetic euglenoid lineage.  相似文献   

15.
To infer the phylogenetic relationships of Xylaria species associated with termite nests within the genus Xylaria and among genera of the subfamily Xylarioideae, β-tubulin, RPB2, and α-actin sequences of 131 cultures of 114 species from Xylaria and 11 other genera of the subfamily were analyzed. These 11 genera included Astrocystis, Amphirosellinia, Discoxylaria, Entoleuca, Euepixylon, Kretzschmaria, Nemania, Podosordaria, Poronia, Rosellinia, and Stilbohypoxylon. We showed that Xylaria species were distributed among three major clades, TE, HY, and PO, with clade TE—an equivalent of the subgenus Pseudoxylaria—encompassing exclusively those species associated with termite nests and the other two clades containing those associated with substrates other than termite nests. Xylaria appears to be a paraphyletic genus, with most of the 11 genera submerged within it. Podosordaria and Poronia, which formed a distinct clade, apparently diverged from Xylaria and the other genera early. Species of Entoleuca, Euepixylon, Nemania, and Rosellinia constituted clade NR, a major clade sister to clade PO, while those of Kretzschmaria were inserted within clade HY and those of Astrocystis, Amphirosellinia, Discoxylaria, and Stilbohypoxylon were within clade PO.  相似文献   

16.
Phylogenetic relationships, limits of species, and genera within Lycoperdaceae, were inferred by use of ITS and LSU nu-rDNA sequence data. Lycoperdaceae was confirmed as monophyletic, and Mycenastrum corium as a sister taxon to the ingroup. Four major clades were identified and received weak to moderate support and correspond with the genera Lycoperdon, Bovista, Calvatia, and Disciseda. The Lycoperdon clade includes species from Lycoperdon, Vascellum, Morganella, Handkea, Bovistella, and Calvatia. The structure within the Lycoperdon clade is unresolved and several clades are more or less unsupported, which suggests treating the supported Lycoperdon clade as the genus Lycoperdon. L. nigrescens and L. caudatum occur on single branches and their phylogenetic positions could not be resolved. The phylogenetic analyses identified 31 species of Lycoperdon, 11 species of Bovista, six species of Calvatia, and two species of Disciseda. In Lycoperdon three new species were recognized. A new species closely related to B. limosa is identified and discussed. A classification of Lycoperdaceae is proposed based on the results of the phylogenetic analyses. Morphological characters of species within and among identified clades are discussed.  相似文献   

17.
18.
Freshwater mussels (Bivalvia, Unionidae) have suffered strong declines over the last century. High morphological plasticity of Unionidae causes disturbances in their systematics and taxonomy, hampering conservation efforts. Species that have historically been placed under the North American genus Quadrula have suffered from numerous taxonomic and species delineation problems since its inception. Four genera are presently recognized within Quadrula sensu lato, that is, Cyclonaias, Quadrula, Theliderma and Tritogonia, but their phylogenetic basis remains incompletely tested. In the present study, we reconstructed several two‐marker (mtDNA cytochrome c oxidase subunit I—COI and NADH dehydrogenase subunit 1—ND1) phylogenies with newly collected specimens and all previously available sequences covering most species within this group. We then delineated the species within the group using an integrative approach with the application of molecular statistical methods, morphometric (Fourier Shape) analyses and geographic distribution data. Four clades corresponding to these genera were consistently recovered in all phylogenies. To validate the generic status of these clades, molecular analyses were complemented with morphological, anatomical and ecological data compiled from the literature. Several revisions are here proposed to the current systematics and taxonomy of these genera, including the synonymization of Cyclonaias asperata under Cyclonaias kieneriana; the inclusion of Quadrula apiculata and Quadrula rumphiana under Quadrula quadrula; the placement of Quadrula nobilis under Tritogonia; and finally the separation of the Mobile River basin populations of Theliderma metanevra as a new species, that is, Theliderma johnsoni n. sp. The conservation implications of the proposed changes are then discussed.  相似文献   

19.
Most Neotropical colubrid snakes belong to a single, well‐supported lineage. Relationships between the major constituents of this clade remain. Here, we explore the phylogenetic relationships of Mastigodryas and its affinities to other Neotropical colubrid genera by combining DNA and morphological data. Analyses demonstrate that the concatenation of multiple individuals into a single terminal can mask the detection of new taxa. Further, non‐random missing data and/or taxa in some empirical datasets can bias species tree analyses more than concatenation approaches. Our results place Mastigodryas in a strongly supported clade that includes Drymarchon, Rhinobothryum, Drymoluber, Simophis and Leptodrymus. Mastigodryas bifossatus is more closely related to species of Drymoluber and Simophis than to its congeners. Thus, we erect a new genus to accommodate it and recover a monophyletic Mastigodryas. We highlight the importance of the use of morphological characters to diagnose suprageneric clades by showing that some key external and hemipenial characteristics are phylogenetically informative.  相似文献   

20.
Small subunit (SSU) and large subunit (LSU) rDNA sequences have been commonly used to delineate the taxonomy and biogeography of the planktonic diatom genus Skeletonema, but the genes occur as multiple copies and are therefore not suitable for barcoding purposes. Here, we analyzed phylogenetic relationships of Skeletonema using the mitochondrial‐encoded cytochrome c oxidase I gene (cox1), as well as partial LSU rDNA (D1–D3) and SSU rDNA, to identify the factors that define species and to evaluate the utility of these three markers for this taxon. Twelve Skeletonema species were divided into six clades, I–VI, each of which comprised the same species by the three markers: clades I (S. japonicum, S. grethae, S. pseudocostatum, and S. tropicum), II (S. menzelii), III (S. dohrnii and S. marinoi), IV (S. costatum, S. potamos, and S. subsalsum), V (S. grevillei), and VI (S. ardens). However, the branching order among these clades was incongruent among the markers. In clade III, six S. marinoi strains had identical cox1 sequences. These S. marinoi strains branched along with S. dohrnii, except for strains from the Gulf of Naples, with high support in cox1. Species delimitation between S. dohrnii and S. marinoi was therefore not supported. In clade IV, S. costatum and S. subsalsum were robustly clustered, with S. potamos as a sister clade in the cox1 tree, not in the LSU and SSU trees. In clade II, cox1 also confirmed that S. menzelii includes three subclades potentially distinguishable from each other by morphological features. Cox1 proved to be the most useful marker for the identification of Skeletonema species because it gave a tree with highly supported clades, has sufficient variation within and among species, encodes a protein in a single copy, and requires relatively few primers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号