首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Wingless (Wg)/Wnt signaling pathway regulates a myriad of developmental processes and its malfunction leads to human disorders including cancer. Recent studies suggest that casein kinase I (CKI) family members play pivotal roles in the Wg/Wnt pathway. However, genetic evidence for the involvement of CKI family members in physiological Wg/Wnt signaling events is lacking. In addition, there are conflicting reports regarding whether a given CKI family member functions as a positive or negative regulator of the pathway. Here we examine the roles of seven CKI family members in Wg signaling during Drosophila limb development. We find that increased CKIepsilon stimulates whereas dominant-negative or a null CKIepsilon mutation inhibits Wg signaling. In contrast, inactivation of CKIalpha by RNA interference (RNAi) leads to ectopic Wg signaling. Interestingly, hypomorphic CKIepsilon mutations synergize with CKIalpha RNAi to induce ectopic Wg signaling, revealing a negative role for CKIepsilon. Conversely, CKIalpha RNAi enhances the loss-of-Wg phenotypes caused by CKIepsilon null mutation, suggesting a positive role for CKIalpha. While none of the other five CKI isoforms can substitute for CKIalpha in its inhibitory role in the Wg pathway, several CKI isoforms including CG12147 exhibit a positive role based on overexpression. Moreover, loss of Gilgamesh (Gish)/CKIgamma attenuates Wg signaling activity. Finally, we provide evidence that several CKI isoforms including CKIalpha and Gish/CKIgamma can phosphorylate the Wg coreceptor Arrow (Arr), which may account, at least in part, for their positive roles in the Wg pathway.  相似文献   

2.
Retinoic acid (RA) is a vitamin A metabolite that acts as a morphogen and teratogen. Excess or defective RA signaling causes developmental defects including in the heart. The heart develops from the anterior lateral plate mesoderm. Cardiogenesis involves successive steps, including formation of the primitive heart tube, cardiac looping, septation, chamber development, coronary vascularization, and completion of the four‐chambered heart. RA is dispensable for primitive heart tube formation. Before looping, RA is required to define the anterior/posterior boundaries of the heart‐forming mesoderm as well as to form the atrium and sinus venosus. In outflow tract elongation and septation, RA signaling is required to maintain/differentiate cardiogenic progenitors in the second heart field at the posterior pharyngeal arches level. Epicardium‐secreted insulin‐like growth factor, the expression of which is regulated by hepatic mesoderm‐derived erythropoietin under the control of RA, promotes myocardial proliferation of the ventricular wall. Epicardium‐derived RA induces the expression of angiogenic factors in the myocardium to form the coronary vasculature. In cardiogenic events at different stages, properly controlled RA signaling is required to establish the functional heart.  相似文献   

3.
《Organogenesis》2013,9(1):108-125
Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease. Here, we present an overview of the role of nodal and cardiac primary cilia in heart development.  相似文献   

4.
Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease. Here, we present an overview of the role of nodal and cardiac primary cilia in heart development.  相似文献   

5.
《Fly》2013,7(4):218-225
The Wnt/Wingless (Wg) signaling cascade controls a number of biological processes in animal development and adult life; aberrant Wnt/Wg signaling can cause diseases. In the 1980s genes were discovered that encode core Wnt/Wg pathway components: their mutant phenotypes were similar and an outline of a signaling cascade emerged. Over the years our knowledge of this important signaling system increased and more components were uncovered that are instrumental for Wnt/Wg secretion and transduction. Here we provide an overview of these discoveries, the technologies involved, with a particular focus on the important role Drosophila screens played in this process.  相似文献   

6.
7.
Wnt signaling mediated by β-catenin has been implicated in early endocardial cushion development, but its roles in later stages of heart valve maturation and homeostasis have not been identified. Multiple Wnt ligands and pathway genes are differentially expressed during heart valve development. At E12.5, Wnt2 is expressed in cushion mesenchyme, whereas Wnt4 and Wnt9b are predominant in overlying endothelial cells. At E17.5, both Wnt3a and Wnt7b are expressed in the remodeling atrioventricular (AV) and semilunar valves. In addition, the TOPGAL Wnt reporter transgene is active throughout the developing AV and semilunar valves at E16.5, with more localized expression in the stratified valve leaflets after birth. In chicken embryo aortic valves, genes characteristic of osteogenic cell lineages including periostin, osteonectin, and Id2 are expressed specifically in the collagen-rich fibrosa layer at E14. Treatment of E14 aortic valve interstitial cells (VICs) in culture with osteogenic media results in increased expression of multiple genes associated with bone formation. Treatment of VIC with Wnt3a leads to nuclear localization of β-catenin and induction of periostin and matrix gla protein but does not induce genes associated with later stages of osteogenesis. Together, these studies provide evidence for Wnt signaling as a regulator of endocardial cushion maturation as well as valve leaflet stratification, homeostasis, and pathogenesis.  相似文献   

8.
叶中德  吴畏 《生命科学》2007,19(4):359-363
非洲爪蟾是脊椎动物胚胎发育研究中的几种重要模式生物之一,为揭示早期胚胎发育中的分子调控机制做出了显著的贡献.其中一个重要的发现就是细胞信号通路在胚胎发育中起到非常关键的调控作用.本文简单介绍Wnt信号在爪蟾早期胚胎发育不同时期的几种调控作用.  相似文献   

9.
The germline cells of Drosophila are derived from pole cells, which form at the posterior pole of the blastoderm and become primordial germ cells (PGCs). To elucidate the signal transduction pathways for the development of embryonic PGCs, we examined the effects of various growth factors on the proliferation of PGCs. Up- and down-regulation of Wingless (Wg) in both of soma and PGCs caused an increase and a decrease in the number of PGCs, respectively. The Wg/β-catenin signaling pathway began to occur in PGCs at the same time as the PGCs began to divide during the embryonic stage in both sexes. In addition, PGCs were found to produce wg mRNA as they begin to divide. Thus, Wg functions as an autocrine factor to initiate mitosis in embryonic PGCs. Decapentaplegic affected the growth of PGCs from the end of the embryonic stage. The results indicate that these growth factors regulate the division of embryonic PGCs in a stage-specific manner.  相似文献   

10.
BMP signaling is one of the key pathways regulating craniofacial development. It is involved in the early patterning of the head, the development of cranial neural crest cells, and facial patterning. It regulates development of its mineralized structures, such as cranial bones, maxilla, mandible, palate, and teeth. Targeted mutations in the mouse have been instrumental to delineate the functional involvement of this signaling network in different aspects of craniofacial development. Gene polymorphisms and mutations in BMP pathway genes have been associated with various non-syndromic and syndromic human craniofacial malformations. The identification of intricate cellular interactions and underlying molecular pathways illustrate the importance of local fine-regulation of Bmp signaling to control proliferation, apoptosis, epithelial-mesenchymal interactions, and stem/progenitor differentiation during craniofacial development. Thus, BMP signaling contributes both to shape and functionality of our facial features. BMP signaling also regulates postnatal craniofacial growth and is associated with dental structures life-long. A more detailed understanding of BMP function in growth, homeostasis, and repair of postnatal craniofacial tissues will contribute to our ability to rationally manipulate this signaling network in the context of tissue engineering.  相似文献   

11.
12.
Hematopoietic stem cells (HSCs) can self-renew and differentiate into all cell types of the blood. This is therapeutically important as HSC transplants can provide a curative effect for blood cancers and disorders. The process by which HSCs develop has been the subject of extensive research in a variety of model organisms; however, efforts to produce bonafide HSCs from pluripotent precursors capable of long-term multilineage reconstitution have fallen short. Studies in zebrafish, chicken, and mice have been instrumental in guiding efforts to derive HSCs from human pluripotent stem cells and have identified a complex set of molecular signals and cellular interactions mediated by such developmental regulators as fibroblast growth factor, Notch, transforming growth factor beta (TGFβ), and Wnt, which collectively promote the stepwise developmental progression toward mature HSCs. Tight temporal and spatial control of these signals is critical to generate the appropriate numbers of HSCs needed for the life of the organism. The role of the Wnt family of signaling proteins in hematopoietic development has been the subject of many studies owing in part to the complex nature of its signaling mechanisms. By integrating cell fate specification with cell polarity establishment, Wnt is uniquely capable of controlling complex biological processes, including at multiple stages of embryonic HSC development, from HSC specification to emergence from the hemogenic epithelium to subsequent expansion. This review highlights key signaling events where specific Wnt signals instruct and guide hematopoietic development in both zebrafish and mice and extend these findings to current efforts of generating HSCs in vitro.  相似文献   

13.
Wnt4 is required for proper male as well as female sexual development   总被引:1,自引:0,他引:1  
Genes previously implicated in mammalian sexual development have either a male- or female-specific role. The signaling molecule WNT4 has been shown to be important in female sexual development. Lack of Wnt4 gives rise to masculinization of the XX gonad and we showed previously that the role of WNT4 was to inhibit endothelial and steroidogenic cell migration into the developing ovary. Here we show that Wnt4 also has a function in the male gonad. We find that Sertoli cell differentiation is compromised in Wnt4 mutant testes and that this defect occurs downstream of the testis-determining gene Sry but upstream of Sox9 and Dhh, two early Sertoli cell markers. Genetic analysis shows that this phenotype is primarily due to the action of WNT4 within the early genital ridge. Analysis of different markers identifies the most striking difference in the genital ridge at early stages of its development between wild-type and Wnt4 mutant embryos to be a significant increase of steroidogenic cells in the Wnt4 -/- gonad. These results identify WNT4 as a new factor involved in the mammalian testis determination pathway and show that genes can have a specific but distinct role in both male and female gonad development.  相似文献   

14.
《Developmental neurobiology》2017,77(11):1239-1259
The vertebrate central nervous system (CNS) is comprised of vast number of distinct cell types arranged in a highly organized manner. This high degree of complexity is achieved by cellular communication, including direct cell‐cell contact, cell‐matrix interactions, and cell‐growth factor signaling. Among the several developmental signals controlling the development of the CNS, Wnt proteins have emerged as particularly critical and, hence, have captivated the attention of many researchers. With Wnts' evolutionarily conserved function as primordial symmetry breaking signals, these proteins and their downstream effects are responsible for simultaneously establishing cellular diversity and tissue organization. With their expansive repertoire of secreted agonists and antagonists, cell surface receptors, signaling cascades and downstream biological effects, Wnts are ideally suited to control the complex processes underlying vertebrate neural development. In this review, we will describe the mechanisms by which Wnts exert their potent effects on cells and tissues and highlight the many roles of Wnt signaling during neural development, starting from the initial induction of the neural plate, the subsequent patterning along the embryonic axes, to the intricately organized structure of the CNS. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1239–1259, 2017  相似文献   

15.
The Wnt/Wingless (Wg) signaling cascade controls a number of biological processes in animal development and adult life; aberrant Wnt/Wg signaling can cause diseases. In the 1980s genes were discovered that encode core Wnt/Wg pathway components: their mutant phenotypes were similar and an outline of a signaling cascade emerged. Over the years our knowledge of this important signaling system increased and more components were uncovered that are instrumental for Wnt/Wg secretion and transduction. Here we provide an overview of these discoveries, the technologies involved, with a particular focus on the important role Drosophila screens played in this process.  相似文献   

16.
果蝇心脏早期发育与脊椎动物乃至人具有相似的分子机理,自90年代以来,通过P转位子诱变方法已鉴定出20多个与果蝇早期发育相关基因,这为揭示人体心脏发育的基因调控机理提供了重要的依据。  相似文献   

17.
18.
心脏发育过程中的信号调控机制研究   总被引:1,自引:0,他引:1  
常在  杨中州 《生命科学》2007,19(4):353-358
我国是出生缺陷高发国家,其中先天性心脏病在各类出生缺陷中居于首位,严重地影响我国的人口素质.同样,后天性心脏血管疾病(心血管疾病)也是影响国民健康和社会发展的主要疾病.近年来研究表明,所谓"后天性"心脏血管疾病虽然大多不在胚胎期表现出功能异常,但遗传因素在发病过程中也起关键作用,因此,"后天性"心血管疾病也有其发育生物学基础.在一些心血管疾病中,胚胎发育基因如ANF和β-MHC的表达说明胚胎发育的某些机制参与了发病过程.由于出生缺陷和心血管疾病的防治是我国公共卫生和社会发展中亟待解决的重大健康问题,了解心血管系统正常发生发育规律和机制及发病机理并在此基础上建立新的防治策略和防治措施是生命科学需要解决的重大基础科学问题.本文主要综述了目前模式动物,特别是小鼠心脏发育过程中的信号传导调控机制的研究现状及进展.  相似文献   

19.
Akt signaling pathway in pacing-induced heart failure   总被引:2,自引:0,他引:2  
Marked changes in energy substrate utilization occur during the progression of congestive heart failure (CHF) where fatty acid utilization, as the primary source of cardiac energy, is severely diminished, oxidative phosphorylation is down-regulated, and glucose uptake and utilization increase. Neither the signaling events or the molecular basis for the shift in substrate utilization have yet been elucidated. This study was designed to examine in the canine model of paced-induced CHF, the potential role of the Akt pathway in signaling the metabolic transitions central to progression to heart failure. Myocardial Akt levels were elevated in early heart failure (after 1–2 weeks of pacing) accompanied by increased levels of oxidative stress, cytokine tumor necrosis factor- (TNF-) and free fatty acid accumulation, reduced activity levels of mitochondrial respiratory complexes III and V and apoptosis initiation. At severe heart failure (3–4 weeks of pacing), there was significant further increase in myocardial apoptosis, with pronounced decline in myocardial Akt kinase activity. At this later stage, there were no further changes in free fatty acid accumulation, complex V activity or in oxidative stress levels indicating that these changes primarily occurred in the earlier stage of evolving heart failure. In contrast, during severe heart failure, both the reduction in complex III activity and increase in TNF- level became more pronounced. Our data provide critical support for the hypothesis that the Akt signaling pathway is a contributory element in the early signaling events leading to the progression of pacing-induced heart failure, accompanying the shift in substrate utilization. (Mol Cell Biochem 268: 103–110, 2005)  相似文献   

20.
Evidence has demonstrated that the microRNA (miR) may play a significant role in the development of congenital heart disease (CHD). Here, we explore the mechanism of microRNA-592 (miR-592) in heart development and CHD with the involvement of KCTD10 and Notch signaling pathway in a CHD mouse model. Cardiac tissues were extracted from CHD and normal mice. Immunohistochemistry staining was performed to detect positive expression rate of KCTD10. A series of inhibitor, activators, and siRNAs was introduced to verified regulatory functions for miR-592 governing KCTD10 in CHD. Furthermore, the effect of miR-592 on cell proliferation and apoptosis was also investigated. Downregulated positive rate of KCTD10 was observed in CHD mice. Downregulation of miR-592 would upregulate expression of KCTD10 and inhibit the activation of Notch signaling pathway, thus promote cell proliferation. This study demonstrates that downregulation of miR-592 prevents CHD and hypoplastic heart by inhibition of the Notch signaling pathway via negatively binding to KCTD10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号