首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Origin and phylogeographical structure of Chinese cattle   总被引:7,自引:0,他引:7  
Lei CZ  Chen H  Zhang HC  Cai X  Liu RY  Luo LY  Wang CF  Zhang W  Ge QL  Zhang RF  Lan XY  Sun WB 《Animal genetics》2006,37(6):579-582
Complete mitochondrial D-loop sequences of 231 samples were used to explore the origin and genetic diversity of Chinese cattle. Phylogenetical analysis of these sequences revealed both Bos taurus and Bos indicus mitochondrial types in Chinese cattle. Four of the previously identified mitochondrial DNA lineages (T1–T4) were identified in the Bos taurus type, including lineage T1, which was found for the first time in Chinese cattle. Two lineages (I1 and I2) were identified in the Bos indicus type. Our results support the suggestion that the Yunnan-Guizhou Plateau is the domestication site of Chinese zebu. We also found evidence that Tibetan cattle originated from taurine and zebu cattle. The distribution pattern of Chinese cattle breeds was closely related to the geographical and climatic background. It was possible to divide Chinese cattle in this study into two major groups: northern and southern cattle.  相似文献   

2.
Complete mitochondrial DNA D‐loop sequences of 1105 individuals were used to assess the diversity of maternal lineages of cattle populations in China. In total, 250 taurine and 88 zebu haplotypes were identified. Five main haplogroups—T1a, T2, T3, T4 and T5—were identified in Bos taurus, whereas Bos indicus harbored two haplogroups—I1 and I2. Our results suggest that the distribution of T1a in Asia was concentrated mainly in the northeast region (northeast China, Korea and Japan); haplogroups T2, T3 and T4 were predominant in Chinese cattle; and T5 was sporadically detected in Mongolian and Pingwu cattle. In contrast to the widespread presence of I1, I2 was distributed only in southwestern China (Yunnan‐Guizhou Plateau and the Tibet Autonomous Region) and Xinjiang Uygur Autonomous Region. This is the first time that all five taurine haplogroups and two zebu haplogroups have been found in Mongolian cattle. In addition, eight individuals in Tibetan cattle carried the Bos grunniens mtDNA type. The high mtDNA diversity (= 0.904 ± 0.008) and the weak genetic structure among the 57 Chinese cattle breeds/populations are consistent with their complex historical background, migration route and ecological environment.  相似文献   

3.
对10头原种婆罗门牛mtDNAD-loop全序列912 bp测序,婆罗门牛遗传多样性丰富,检测到的9种单倍型兼有瘤牛(B.indicus)与普通牛(B.taurus)的遗传背景,核苷酸变异率为6.25 %,单倍型多态度为0.978±0.054 ,核苷酸多态度为0.014 30±0.008 68。所有单倍型聚为明显的两大分支,婆罗门牛的大部分单倍型为普通牛单倍型类群,并占绝对优势(90 %) ,仅Brah-6与亚洲瘤牛聚在一起,属于亚洲瘤牛线粒体单倍型,表明婆罗门牛的确是集亚洲瘤牛、欧洲普通牛等优良特性于一身(易产犊、产肉性能好、耐热与体表寄生虫等)的瘤牛品种之一。育种学家引种瘤牛的目的是改善当地牛的生产力与适应性,现代普通牛表现出明显又普遍的瘤牛渐渗现象。对现代的瘤牛品种而言,除亚洲瘤牛品种外,普通牛对其他瘤牛品种育成的贡献同样高。支持瘤牛(B.indicus)为独立驯化、起源于印度次大陆的假说。  相似文献   

4.
中国黄牛品种资源丰富,尚有28个地方固有品种.为了进一步深入了解这些宝贵遗传资源,本研究通过mtDNA变异特征与多态性分析揭示这些来自中国不同地域地方黄牛的母系起源与分子系统学特征.在17个品种84个体的mtDNA D-loop全序列中,一共检测到了102个核苷酸替代突变位.由此定义的53个单倍型被类聚为2个明显的单倍群:普通牛和瘤牛.mtDNA D-loop全序列变异的第一个特征是转换发生的频率远高于颠换;第二个特征是缺失与替代突变共存;第三个特征是缺失突变率比较高.所有D-loop全序列的核苷酸多样性和单倍型多样性分别为0.026 78±0.000 50和0.919±0.027.普通牛D-loop单倍型在北方牛种群中占有优势(80%~100%),而瘤牛单倍型在南方牛种群中占有优势(42.9%~100%),2种不同单倍型在中原牛种群中的分布也存在差异.2种不同单倍型在中国不同地域17个黄牛品种中的差异性分布揭示出了瘤牛mtDNA基因在中国黄牛中自南而北、由高到低的流动模式,这种基因流动模式的形成可能是由历史事件、地理隔离以及气候环境差异等造成的.  相似文献   

5.
Cai X  Chen H  Lei C  Wang S  Xue K  Zhang B 《Genetica》2007,131(2):175-183
In order to clarify the origin and genetic diversity of indigenous cattle breeds in China, we carried out phylogenetic analysis of representatives of those breeds by employing mitochondrial gene polymorphism. Complete cyt b gene sequences, 1140 bp in length, were determined for a total of 136 individuals from 18 different breeds and these sequences were clustered into two distinct genetic lineages: taurine (Bos taurus) and zebu (Bos indicus). In analysis of the cyt b gene diversity, Chinese cattle showed higher nucleotide (0.00923) and haplotype diversity (0.848) than the reports from other studies, and the animals from the taurine lineage indicated higher nucleotide diversity (0.00330) and haplotype diversity (0.746) than the ones from the zebu lineage (0.00136; 0.661). The zebu mtDNA dominated in the southern breeds (63.3–100%), while the taurine dominated in the northern breeds (81.8–100%). Six cattle breeds from the central area of China exhibited intermediate frequencies of zebu mtDNA (25–71.4%). This polymorphism revealed a declining south-to-north gradient of female zebu introgression and a geographical hybrid zone of Bos taurus and Bos indicus in China.  相似文献   

6.
Using nucleotide sequences of the mitochondrial DNA (mtDNA) cytochrome b and SRY genes, we examined the genetic status of two major groups of domestic cattle, the humpless taurine (Bos taurus) and humped zebu (B. indicus), using 10 cattle populations in Asia. Several sequence polymorphisms specific for each major group were found, although the frequency of these polymorphisms varied in each population. Six major mtDNA-SRY composite types were observed. The Mishima, Mongolian, Korean, Chinese Yellow and Sri Lanka cattle populations had a full match between the mtDNA and SRY sequences, specifically the taurine/taurine type or zebu/zebu type. A non-match type (zebu/taurine type) was found at a high frequency in the Bangladesh (83.4%) and Nepal populations (83.3%). Our results suggest that these non-match type populations developed from genetic hybridization of different strains. Also, the domestication history of modern Asian domestic cattle could be explained by male-mediated introgression. Additionally, our results suggest the occurrence of introgression of mtDNA from other Bibos or Poephagus species into native cattle populations. The existence of other mtDNA-SRY composite types, such as the Bali-zebu and yak-zebu types in Indonesia (85.7%) and Nepal (16.7%), respectively, suggests that genetic introgression also occurred from other genera into domestic cattle during the process of domestication.  相似文献   

7.
In order to clarify the origin and genetic diversity of cattle in North Eastern Asia, this study examined mitochondrial displacement loop sequence variation and frequencies of Bos taurus and Bos indicus Y chromosome haplotypes in Japanese, Mongolian, and Korean native cattle. In mitochondrial analyses, 20% of Mongolian cattle carried B. indicus mitochondrial haplotypes, but Japanese and Korean cattle carried only B. taurus haplotypes. In contrast, all samples revealed B. taurus Y chromosome haplotypes. This may be due to the import of zebu and other cattle during the Mongol Empire era with subsequent crossing with native taurine cattle. B. taurus mtDNA sequences fall into several geographically distributed haplogroups and one of these, termed here T4, is described in each of the test samples, but has not been observed in Near Eastern, European or African cattle. This may have been locally domesticated from an East Eurasian strain of Bos primigenius.  相似文献   

8.
Mitochondrial DNA variation in cattle of South China: origin and introgression   总被引:21,自引:0,他引:21  
Y Yu  L Nie  Z Q He  J K Wen  C S Jian  Y P Zhang 《Animal genetics》1999,30(4):245-250
Ten restriction endonucleases were used to investigate the mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) of 11 native cattle breeds and one cultivated cattle breed in South China. Twenty-three restriction morphs were detected, which can be sorted into five haplotypes. A phylogenetic tree of the haplotypes was constructed by using the 'upgMa' method. Our study showed that haplotype I and II are identical to the zebu (Bos indicus) and taurine (Bos taurus) haplotypes, respectively. Zebu and taurine were the two major origins of cattle populations in South China, and the zebu probably had more influence on the native cattle population than taurine did. Haplotype III is identical to haplotype I of yak (Bos grunniens), which was only detected in the Diqing cattle breed. Haplotype IV was detected for the first time. This haplotype, found only in Dehong cattle, might be from an independent domestication event, probably from another Bos indicus population. Divergence of haplotypes I and IV occurred about 268,000-535,000 years ago, much earlier than the 10,000-year history of cattle husbandry. Our results also suggest a secondary introgession of mtDNA from yak to Diqing cattle.  相似文献   

9.
Genetic diversity, introgression and relationships were studied in 521 individuals from 9 African Bos indicus and 3 Bos taurus cattle breeds in Cameroon and Nigeria using genotype information on 28 markers (16 microsatellite, 7 milk protein and 5 blood protein markers). The genotypes of 13 of the 16 microsatellite markers studied on three European (German Angus, German Simmental and German Yellow) and two Indian (Nelore and Ongole) breeds were used to assess the relationships between them and the African breeds. Diversity levels at microsatellite loci were higher in the zebu than in the taurine breeds and were generally similar for protein loci in the breeds in each group. Microsatellite allelic distribution displayed groups of alleles specific to the Indian zebu, African taurine and European taurine. The level of the Indian zebu genetic admixture proportions in the African zebus was higher than the African taurine and European taurine admixture proportions, and ranged from 58.1% to 74.0%. The African taurine breed, Muturu was free of Indian zebu genes while its counter Namchi was highly introgressed (30.2%). Phylogenic reconstruction and principal component analysis indicate close relationships among the zebu breeds in Cameroon and Nigeria and a large genetic divergence between the main cattle groups – African taurine, European taurine and Indian zebu, and a central position for the African zebus. The study presents the first comprehensive information on the hybrid composition of the individual cattle breeds of Cameroon and Nigeria and the genetic relationships existing among them and other breeds outside of Africa. Strong evidence supporting separate domestication events for the Bos species is also provided.  相似文献   

10.
We describe satellite DNA variation that detects hybridization of Bos indicus (zebu or indicine cattle) and Bos taurus (taurine cattle) in African cattle populations. On Southern blots hybridized to a satellite III probe, relative intensities of Hinfl fragments correlated with the taurine-zebu composition in hybrid animals as deduced from AFLP genotyping of the same animals and previous data on microsatellite allele frequencies. Similar results were obtained by PCR-RFLP analysis of a zebu-specific mutation in the repeat unit of satellite 1.711b. Analysis of individuals from 20 African cattle breeds indicate that the centromeric satellites of the sanga breeds are of the taurine type and that several East-African zebu breeds are hybrids between taurine and zebu. These satellite RFLP, or SFLP, markers provide a fast method to screen the genetic makeup of African cattle.  相似文献   

11.
The domestication of cattle fuelled the development of agricultural society in the history of human being.The evolution and genetic relationship of cattle can be elucidated by investigating the variation of mitochondrial DNA(mtDNA) D-loop sequence.In this study,we built a cattle phylogeny with a pool of 856 individual D-loop sequences,of which 264 Chinese cattle D-loop sequences were obtained in this study(141 ones were first analyzed,and 123 were first submitted) and the rest sequences of cattle from six A...  相似文献   

12.
牛科动物HSL基因序列分析及其分子进化研究   总被引:4,自引:0,他引:4  
在对牛科中4种动物即牦牛、瘤牛、普通牛和水牛HSL基因外显子Ⅰ部分核苷酸序列进行测定的基础上,与Gen-Bank中其他物种相应基因核苷酸序列、氨基酸序列进行了比对分析,并构建了牦牛与其他物种间分子系统进化树。结果表明:牦牛与普通牛、瘤牛、水牛、猪、人、小鼠、大鼠7个物种HSL基因外显子Ⅰ部分核苷酸序列间保守性较高,同源性大小依次为99.8%、99.6%、97.4%、90.6%、88.4%、83.5%、82.3%。相应氨基酸序列间保守性更高,同源性分别为100%、100%、98.2%、94.0%、92.2%、89.8%、89.8%。牦牛与各物种该基因部分核苷酸序列间碱基变异类型主要表现为碱基转换和颠换,无碱基插入和缺失发生,碱基转换的频率高于颠换的频率;在核苷酸水平上的多数碱基替换都是同义替换;序列间单碱基变异位点大多出现在同一位点,多发生在密码子第3位,其次是第1位,最少发生在第2位,符合分子进化的中性学说。HSL基因外显子Ⅰ部分核苷酸序列进行多序列对位排列构建的各物种间分子系统进化树结果表明,普通牛和瘤牛首先聚为一类,再分别与牦牛、水牛、猪、人聚类,最后与大鼠、小鼠聚为一类。该聚类结果与动物学上的分类结果一致,表明HSL基因外显子Ⅰ部分核苷酸序列适合于构建物种间分子系统进化树。研究表明,牦牛、普通牛和瘤牛3个物种间的遗传距离大小相近,牦牛和水牛间的遗传距离与普通牛、瘤牛和水牛间的遗传距离大小相当。牦牛、普通牛和瘤牛3个物种间的遗传距离远小于它们各自与水牛这一物种的遗传距离,它们三者之间的亲缘关系也相对于它们各自与水牛间的亲缘关系都较近,故将牦牛、普通牛和瘤牛划分在同一个属——牛属(Bos)更为合理。  相似文献   

13.
Together with their sister subspecies Bos taurus, zebu cattle (Bos indicus) have contributed to important socioeconomic changes that have shaped modern civilizations. Zebu cattle were domesticated in the Indus Valley 8000 years before present (YBP). From the domestication site, they expanded to Africa, East Asia, southwestern Asia and Europe between 4000 and 1300 YBP, intercrossing with B. taurus to form clinal variations of zebu ancestry across the landmass of Afro‐Eurasia. In the past 150 years, zebu cattle reached the Americas and Oceania, where they have contributed to the prosperity of emerging economies. The zebu genome is characterized by two mitochondrial haplogroups (I1 and I2), one Y chromosome haplogroup (Y3) and three major autosomal ancestral groups (Indian‐Pakistani, African and Chinese). Phenotypically, zebu animals are recognized by their hump, large ears and excess skin. They are rustic, resilient to parasites and capable of bearing the hot and humid climates of the tropics. Many resources are available to study the zebu genome, including commercial arrays of SNP, reference assemblies and publicly available genotypes and whole‐genome sequences. Nevertheless, many of these resources were initially developed to support research and subsidize industrial applications in B. taurus, and therefore they can produce bias in data analysis. The combination of genomics with precision agriculture holds great promise for the identification of genetic variants affecting economically important traits such as tick resistance and heat tolerance, which were naturally selected for millennia and played a major role in the evolution of B. indicus cattle.  相似文献   

14.
We report for the first time, and for the whole of sub-Saharan Africa, the geographical distribution and the frequency of an indicine and a taurine Y specific allele amongst African cattle breeds. A total of 984 males from 69 indigenous African populations from 22 countries were analysed at the microsatellite locus INRA 124. The taurine allele is probably the oldest one on the continent. However, the taurine and the indicine alleles were present in 291 males (30%), and 693 males (70%), respectively. More particularly, 96% of zebu males (n = 470), 50% of taurine males (n = 263), 29% of sanga males (crossbreed Bos taurus x Bos indicus, n = 263) and 95% of zebu x sanga crossbred males (n = 56) had the indicine allele. The Borgou, a breed classified as zebu x taurine cross showed only the zebu allele (n = 12). The indicine allele dominates today in the Abyssinian region, a large part of the Lake Victoria region and the sahelian belt of West Africa. All the sanga males (n = 64) but only one from the Abyssinian region had the indicine allele. The taurine allele is the commonest only among the sanga breeds of the southern African region and the trypanotolerant taurine breeds of West Africa. In West Africa and in the southern Africa regions, zones of introgression were detected with breeds showing both Y chromosome alleles. Our data also reveal a pattern of male zebu introgression in Mozambique and Zimbabwe, probably originating from the Mozambique coast. The sanga cattle from the Lake Victoria region and the Kuri cattle of Lake Chad, cattle populations surrounded by zebu breeds were, surprisingly, completely devoid of the indicine allele. Human migration, phenotypic preferences by the pastoralists, adaptation to specific habitats and to specific diseases are the main factors explaining the present-day distribution of the alleles in sub-Saharan Africa.  相似文献   

15.
In order to clarify the historical origin and phylogeographic affinities of Creole cattle matrilineages throughout the American continent, we analysed published D-loop mtDNA sequences (n = 454) from Creole, Iberian and African cattle breeds. The Western European T3 haplogroup was the most common in American Creole cattle (63.6%), followed by the African T1 (32.4%) and the Near Eastern T2 haplogroups (4%). None of the sequences were found in Bos indicus types. Within the African T1 haplogroup there were two subclades, T1a and T1*, whose geographic distribution in America was clearly disjointed. T1a is a highly divergent clade originally reported for Creole cattle from Brazil and the Lesser Antilles, but whose geographic distribution in Africa remains unknown. In contrast, lineages attributable to T1* are restricted in America to the region colonized by the Spaniards. We propose a new hypothesis for the origins of Creole cattle that summarizes all previously published historical and genetic data. While the African T1* fraction in Creole cattle may have arrived in America through the Iberian breeds, the divergent T1a lineages may have been introduced by Portuguese and other European crowns from some unknown, not-yet-sampled African location. Additional molecular studies will be required for pinpointing the specific African regional source.  相似文献   

16.
The tribe Bovini contains a number of commercially and culturally important species, such as cattle. Understanding their evolutionary time scale is important for distinguishing between post-glacial and domestication-associated population expansions, but estimates of bovine divergence times have been hindered by a lack of reliable calibration points. We present a Bayesian phylogenetic analysis of 481 mitochondrial D-loop sequences, including 228 radiocarbon-dated ancient DNA sequences, using a multi-demographic coalescent model. By employing the radiocarbon dates as internal calibrations, we co-estimate the bovine phylogeny and divergence times in a relaxed-clock framework. The analysis yields evidence for significant population expansions in both taurine and zebu cattle, European aurochs and yak clades. The divergence age estimates support domestication-associated expansion times (less than 12 kyr) for the major haplogroups of cattle. We compare the molecular and palaeontological estimates for the Bison-Bos divergence.  相似文献   

17.

Background

Diversity patterns of livestock species are informative to the history of agriculture and indicate uniqueness of breeds as relevant for conservation. So far, most studies on cattle have focused on mitochondrial and autosomal DNA variation. Previous studies of Y-chromosomal variation, with limited breed panels, identified two Bos taurus (taurine) haplogroups (Y1 and Y2; both composed of several haplotypes) and one Bos indicus (indicine/zebu) haplogroup (Y3), as well as a strong phylogeographic structuring of paternal lineages.

Methodology and Principal Findings

Haplogroup data were collected for 2087 animals from 138 breeds. For 111 breeds, these were resolved further by genotyping microsatellites INRA189 (10 alleles) and BM861 (2 alleles). European cattle carry exclusively taurine haplotypes, with the zebu Y-chromosomes having appreciable frequencies in Southwest Asian populations. Y1 is predominant in northern and north-western Europe, but is also observed in several Iberian breeds, as well as in Southwest Asia. A single Y1 haplotype is predominant in north-central Europe and a single Y2 haplotype in central Europe. In contrast, we found both Y1 and Y2 haplotypes in Britain, the Nordic region and Russia, with the highest Y-chromosomal diversity seen in the Iberian Peninsula.

Conclusions

We propose that the homogeneous Y1 and Y2 regions reflect founder effects associated with the development and expansion of two groups of dairy cattle, the pied or red breeds from the North Sea and Baltic coasts and the spotted, yellow or brown breeds from Switzerland, respectively. The present Y1-Y2 contrast in central Europe coincides with historic, linguistic, religious and cultural boundaries.  相似文献   

18.
Chen SY  Liu YP  Wang W  Gao CZ  Yao YG  Lai SJ 《Biochemical genetics》2008,46(3-4):206-215
Tongjiang cattle are a local cattle population of Sichuan Province, China, numbering approximately half a million in 2005. They have long been grouped into the Bashan breed, although they have a unique breeding history and phenotypic characteristics, as well as a restricted geographic distribution. Morphologically, they can be divided into two groups based on the basic coat color (black and russet). In order to dissect the matrilineal components of Tongjiang cattle and to compare the body size traits of the two morphological groups, we measured five body size traits among 59 Tongjiang cattle samples and further sequenced the mtDNA D-loop sequence of 54 individuals. Among the 54 mtDNAs, 37 (68.5%) were Bos taurus types and 17 (31.5%) were Bos indicus types. Four known B. taurus haplogroups (T1–T4) and one B. indicus haplogroup (I1) were detected in these samples. Two body size traits differed significantly (P < 0.05) between the black group and the russet group, although the two groups possessed similar matrilineal genetic structure. This is the first report to identify all four B. taurus haplogroups in one local Chinese cattle population. Our results suggest that the contribution of different matrilineal lineages to Chinese cattle might be more complex than we originally thought.  相似文献   

19.
Humped African cattle, which are differentiated into zebu and sanga types, have traditionally been classified as Bos indicus . This paper discusses existing evidence and presents new evidence supporting the classification of southern African sangas as Bos taurus and East African zebus as ' taurindicus '. Classification is based on karyotype, frequencies of DNA markers and protein polymorphisms. The Boran, an East African zebu, has an acrocentric Y chromosome typical of Bos indicus . The southern African sanga breeds have a submetacentric Y chromosome typical of Bos taurus . Frequencies of four DNA markers support the hypothesis that the Tuli, a southern African sanga, had taurine ancestors and the Boran had both taurine and indicine ancestors. Frequencies for several protein polymorphisms strongly suggest that southern African sangas have more in common with taurine than with indicine breeds, while East African zebus are an admixture of African taurine and Asian indicine breeds.  相似文献   

20.
A Neolithic domestication of taurine cattle in the Fertile Crescent from local aurochsen (Bos primigenius) is generally accepted, but a genetic contribution from European aurochsen has been proposed. Here we performed a survey of a large number of taurine cattle mitochondrial DNA (mtDNA) control regions from numerous European breeds confirming the overall clustering within haplogroups (T1, T2 and T3) of Near Eastern ancestry, but also identifying eight mtDNAs (1.3%) that did not fit in haplogroup T. Sequencing of the entire mitochondrial genome showed that four mtDNAs formed a novel branch (haplogroup R) which, after the deep bifurcation that gave rise to the taurine and zebuine lineages, constitutes the earliest known split in the mtDNA phylogeny of B. primigenius. The remaining four mtDNAs were members of the recently discovered haplogroup Q. Phylogeographic data indicate that R mtDNAs were derived from female European aurochsen, possibly in the Italian Peninsula, and sporadically included in domestic herds. In contrast, the available data suggest that Q mtDNAs and T subclades were involved in the same Neolithic event of domestication in the Near East. Thus, the existence of novel (and rare) taurine haplogroups highlights a multifaceted genetic legacy from distinct B. primigenius populations. Taking into account that the maternally transmitted mtDNA tends to underestimate the extent of gene flow from European aurochsen, the detection of the R mtDNAs in autochthonous breeds, some of which are endangered, identifies an unexpected reservoir of genetic variation that should be carefully preserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号