首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary There is compelling evidence that the epithelial cell lineages of the gastrointestinal tract are derived from a common stem cell precursor, but the details of the subsequent cellular hierarchies remain uncertain. In this context, it is important to know the arrangement of cell proliferation that gives rise to the final cell populations. In rodents, a number of studies have been performed examining the possible proliferative capacity of endocrine cells, but a wide range of technical problems makes interpretation of these data difficult. Continuous labelling studies suggest that there is potential for proliferation in endocrine cells but flash labelling studies have not been conclusive. In man there are no data on this issue. We have taken advantage of the ability to perform double immunostaining for operational markers of proliferation (Ki67 antigen) and endocrine cell phenotype (chromogranin expression). We demonstrate that there are no double-labelled cells in the normal stomach, small intestine or colon of fetal, neonatal or adult humans. Moreover, no double-labelled cells are found in pathological states associated with endocrine cell hyperplasia (gastritis, ulcerative colitis). These data indicate that the normal endocrine cells of the human gut have no proliferative capacity and that, in this cell lineage, population expansion precedes differentiation.  相似文献   

2.
3.
4.
5.
6.
7.
The human colorectal epithelium is maintained by multipotent stem cells that give rise to absorptive, mucous, and endocrine lineages. Recent evidence suggests that human colorectal cancers are likewise maintained by a minority population of so-called cancer stem cells. We have previously established a human colorectal cancer cell line with multipotent characteristics (HRA-19) and developed a serum-free medium that induces endocrine, mucous and absorptive lineage commitment by HRA-19 cells in vitro. In this study, we investigate the role of the beta1 integrin family of cell surface extracellular matrix receptors in multilineage differentiation by these multipotent human colorectal cancer cells. We show that endocrine and mucous lineage commitment is blocked in the presence of function-blocking antibodies to beta1 integrin. Function-blocking antibodies to alpha2 integrin also blocked both HRA-19 endocrine lineage commitment and enterocytic differentiation by Caco-2 human colon cancer cells; both effects being abrogated by the MEK inhibitor, PD98059, suggesting a role for ERK signaling in alpha2-mediated regulation of colorectal cancer cell differentiation. To further explore the role of alpha2 integrin in multilineage differentiation, we established multipotent cells expressing high levels of wild-type alpha2 integrin or a non-signaling chimeric alpha2 integrin. Overexpression of wild-type alpha2 integrin in HRA-19 cells significantly enhanced endocrine and mucous lineage commitment, while cells expressing the non-signaling chimeric alpha2 integrin had negligible ability for either endocrine or mucous lineage commitment. This study indicates that the collagen receptor alpha2beta1 integrin is a regulator of cell fate in human multipotent colorectal cancer cells.  相似文献   

8.
Ductal cells of the pancreas   总被引:1,自引:0,他引:1  
Ductal cells of the pancreas form the epithelial lining of the branched tubes that deliver enzymes produced by pancreatic acinar cells into the duodenum. In addition, these cells secrete bicarbonate that neutralizes stomach acidity. During development, epithelium of endodermal origin evaginates from the future duodenum area and invades the mesenchyme to form a complex branched network. All endocrine, acinar and ductal cells arise from common precursors in this epithelial structure. Adult ductal cells share some similarities with embryonic primitive ducts and may retain the ability to generate endocrine cells in the adult. Based on challenged pancreas regeneration experiments, the adult ductal cells have been proposed to be pancreatic stem cells but their role in normal endocrine cell turnover has recently been challenged. Manipulating their ability to give rise to endocrine cells may open new avenues in the treatment of diabetes and therefore they have recently been under scrutiny. In addition, in the main form of pancreatic cancer, pancreas adenocarcinoma, tumor cells share similarities with ductal cells. The secrets of an appropriate therapy for this deadly cancer may thus reside in the biology of ductal cells.  相似文献   

9.
10.
11.
A significant percentage of excreted ammonium is added to tubular fluid along the medullary collecting duct. However, it is not clear whether this ammonia is produced in the cortex and delivered into the medulla or is produced directly by medullary cells. To address this issue, rat epithelial cells derived from the renal papilla were grown in continuous culture and their ability to generate ammonia was examined. When grown in Dulbecco's modified Eagle's medium with 4 mM glutamine, these cells produced ammonia at a rate of approximately 27 nmol/10(6) cells/h. When these cells were grown in minimum essential medium without glutamine, ammonia production fell to 7 nmol/10(6) cells/ h. Increasing the glutamine concentrations of minimum essential medium to 4 mM increased ammonia production to slightly greater than 30 nmol/10(6) cells/ h. Increasing the media concentration of glutamate, glycine, or asparagine resulted in no significant increase in ammoniagenesis. Analysis of media amino acid concentration revealed that glutamine was the main amino acid consumed while alanine was the predominant amino acid produced. The glutaminase activity of these cells appears to be primarily phosphate-dependent, similar to that observed in vitro in papillary tubules. Alterations of K+ or H+ ion concentration did not alter ammoniagenesis, but addition of 2.5 mM ammonium chloride significantly reduced net ammonia production. It is concluded that rat papillary epithelial cells have the intrinsic ability to utilize glutamine to generate ammonia and alanine. In vivo ammonia produced locally in the medulla may contribute to final urinary ammonium excretion.  相似文献   

12.
13.
14.
15.
16.
In the fetal development of the mouse pancreas, endocrine cells have been found that express more than one hormone simultaneously. Our objective was to evaluate the existence of such cells in the human fetal pancreas. We found cells coexpressing two of the major pancreatic hormones (insulin, glucagon, and somatostatin) in sections of eight midgestational (12-18 weeks) pancreata and in 0-7% of cells in single-cell suspensions from midgestational pancreata. By electron microscopy, using granule morphology and immunoelectron microscopic techniques, we could confirm these findings and even detect cells containing three hormones. Morphologically different granules contained different immunoreactivities, suggesting parallel regulation of hormone production and packaging. In six newborn pancreata (born after 22-40 weeks of gestation), we could not find any multiple-hormone-containing cells. Subsequently, we evaluated whether multiple-hormone-containing cells proliferate by using pancreatic fragments and single-cell preparations at the light and electron microscopic level (six pancreata). No endocrine hormone-containing cells incorporated bromodeoxyuridine during a 1-hr culture period, indicating that these cells have lost the ability to proliferate under the conditions chosen. We conclude that, as in mice, the human fetal pancreas of 12-18 weeks of gestation contains endocrine cells that express multiple hormones simultaneously. These (multiple) hormone-containing cells do not seem to proliferate under basal conditions.  相似文献   

17.
18.
19.
Pim family kinases enhance tumor growth of prostate cancer cells   总被引:3,自引:0,他引:3  
Recent analyses indicate that the expression of the Pim-1 protein kinase is elevated in biopsies of prostate tumors. To identify the mechanism by which the Pim kinases may affect the growth of prostate tumors, we expressed Pim-1, Pim-2, or a kinase-dead Pim-2 protein in human PC3 prostate cancer cells. On implantation of the transfectants in nude mice, the growth of the cells expressing Pim-1 or Pim-2 was significantly faster than the growth of the control cells transfected with the neomycin-resistant gene or the kinase-dead Pim-2 protein. When grown in medium, the doubling time of the Pim-1 and Pim-2 transfectants was faster (0.75 days) than that of the control cells (1.28 days). We, therefore, examined the ability of Pim to control the phosphorylation of proteins that regulate protein synthesis. On growth factor starvation or rapamycin treatment, the Pim-1 and Pim-2 transfectants maintained their ability to phosphorylate 4E-BP1 and S6 kinase, although this phosphorylation did not occur in the control-transfected PC3 cells. We have found that the cellular levels of c-Myc were elevated in the Pim-1 and Pim-2 transfectants under these conditions. The Pim-1 and Pim-2 transfectants have lower levels of serine/threonine protein phosphatase 2A (PP2A) activity and the alpha- and beta-subunit B56gamma of the PP2A phosphatase do not coimmunoprecipitate in these cells. Thus, the effects of Pim on PP2A activity may mediate the levels of c-Myc and the phosphorylation of proteins needed for increased protein synthesis. Both of these changes could have a significant impact on tumor growth.  相似文献   

20.
Increasing evidence suggests that factors secreted from cells of the immune system can affect endocrine function. In this report we show that the monokine, interleukin-1, inhibits follicle stimulating hormone-induced development of luteinizing hormone receptors and reduces progesterone secreted from cultured rat granulosa cells. These effects of interleukin-1 were observed in the physiological range of 10(-9) M. The ability of sex steroids to influence the immune response together with our results support the hypothesis that there is a bidirectional communication network which links the immune and reproductive endocrine systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号