共查询到20条相似文献,搜索用时 15 毫秒
1.
The present model of the motoneuronal (MN) pool – muscle complex (MNPMC) is deterministic and designed for steady isometric
muscle activation. Time-dependent quantities are treated as time-averages. The character of the model is continuous in the
sense that the motor unit (MU) population is described by a continuous density function. In contrast to most already published
models, the wiring (synaptic weight) between the input fibers to the MNPMC and the MNs (about which no detailed data are known)
is deduced, whereas the input–force relation is given. As suggested by experimental data, this relation is assumed to be linear
during MU recruitment, but the model allows other, nonlinear relations. The input to the MN pool is defined as the number
of action potentials per second in all input fibers, and the excitatory postsynaptic potential (EPSP) conductance in MNs evoked
by the input is assumed to be proportional to the input. A single compartment model with a homogeneous membrane is used for
a MN. The MNs start firing after passing a constant voltage threshold. The synaptic current–frequency relation is described
by a linear function and the frequency–force transformation of a MU by an exponential function. The sum of the MU contraction
forces is the muscle force, and the activation of the MUs obeys the size principle. The model parameters were determined a
priori, i.e., the model was not used for their estimation. The analysis of the model reveals special features of the activation
curve which we define as the relation between the input normalized by the threshold input of the MN pool and the force normalized
by the maximal muscle force. This curve for any muscle turned out to be completely determined by the activation factor, the
slope of the linear part of the activation curve (during MU recruitment). This factor determines quantitatively the relation
between MU recruitment and rate modulation. This property of the model (the only known model with this property) allows a
quantification of the recruitment gain (Kernell and Hultborn 1990). The interest of the activation factor is illustrated using
two human muscles, namely the first dorsal interosseus muscle, a small muscle with a relatively small force at the end of
recruitment, and the medial gastrocnemius muscle, a strong muscle with a relatively large force at the end of recruitment.
It is concluded that the present model allows us to reproduce the main features of muscle activation in the steady state.
Its analytical character facilitates a deeper understanding of these features.
Received: 24 November 1997 / Accepted in revised form: 30 November 1998 相似文献
2.
3.
Effect of quadriceps femoris muscle length on neural activation during isometric and concentric contractions. 总被引:2,自引:0,他引:2
Nicolas Babault Michel Pousson Anne Michaut Jacques Van Hoecke 《Journal of applied physiology》2003,94(3):983-990
The effect of muscle length on neural drive (here termed "neural activation") was investigated from electromyographic activities and activation levels (twitch interpolation). The neural activation was measured in nine men during isometric and concentric (30 and 120 degrees /s) knee extensions for three muscle lengths (35, 55, and 75 degrees knee flexion, i.e., shortened, intermediate, and lengthened muscles, respectively). Long (76 degrees ), medium (56 degrees ), and short (36 degrees ) ranges of motion were used to investigate the effect of the duration of concentric contraction. Neural activation was found to depend on muscle length. Reducing the duration of contraction had no effect. Neural activation was higher with short muscle length during isometric contractions and was weaker for shortened than for intermediate and lengthened muscles performing 120 degrees /s concentric contractions. Muscle length had no effect on 30 degrees /s concentric neural activation. Peripheral mechanisms and discharge properties of the motoneurons could partly explain the observed differences in the muscle length effect. We thus conclude that muscle length has a predominant effect on neural activation that would modulate the angular velocity dependency. 相似文献
4.
B. R. Jensen K. J?rgensen G. Sj?gaard 《European journal of applied physiology and occupational physiology》1994,69(5):439-444
Ultrasound scanning was performed at three sites above the fossa supraspinata on nine healthy subjects and five patients with myofascial shoulder pain. This method produced a well-defined depiction of the soft tissue layers above the fossa supraspinata and reproducible muscle thickness measurements. In the healthy subjects the average distance from the skin surface to the trapezius muscle was 7.7 mm and the average thickness of the trapezius muscle was 5.3 mm, and the average thickness of supraspinatus muscle was 20.0 mm. The supraspinatus muscle was thinner at the medial measuring site than at the other two sites. In contrast, a tendency towards a larger distance was seen from the skin to trapezius muscle at the medial measuring site than at the other two sites. No statistical differences were found between the two groups of subjects either at rest or during brief shoulder abductions. All the subjects performed a 30° unilateral isometric shoulder abduction test to exhaustion. The median endurance time was 33 min for the healthy subjects and only 5 min for the patients. The ratings of perceived exertion (RPE) were in line with this, since the increment in RPE with time was larger for the patients than for the healthy group. The reduced shoulder abduction endurance time in the patient group may have been related to impaired muscle function and/or pain development. During the 33-min shoulder abduction in the healthy subjects, the thickness of supraspinatus muscle increased by 14%, indicating muscle swelling, whereas the thickness of trapezius muscle remained constant. The fluid imbalance in the supraspinatus muscle compartment may well play a role in the development of muscle fatigue and the disorders found in industry resulting from prolonged work with arms elevated. 相似文献
5.
The electromyographic (EMG) activity pattern across the upper trapezius of 22 healthy subjects was investigated during maximal isometric contractions. Eight bipolar surface electrodes with 10 mm distance between adjacent electrode pairs were placed on a line from the clavicle to the scapula. At the region near the clavicle the highest EMG amplitudes were recorded during 90 ° arm abduction. At the more posterior parts the highest amplitudes were found both during arm abduction and shoulder elevation. A double differential recording technique which reduced the EMG cross-talk contribution supported the finding that the upper trapezius was differently activated when the arm posture was changed. The normalized EMG amplitude-force relationship during the shoulder elevation showed a curvilinear relationship on the anterior part of the upper trapezius with a slower increase in EMG amplitude than force at low force. The slope of the curve, at low force, increased gradually in the posterior direction on the upper trapezius. The EMG activity patterns across the upper trapezius indicate a flexibility in motor activation which maybe reflects a functional optimization of the contractions performed by this muscle. 相似文献
6.
Several EMG-based approaches to muscle fatigue assessment have recently been proposed in the literature. In this work, two multivariate fatigue indices developed by the authors: a generalized mapping index (GMI) and the first component of principal component analysis (PCA) were compared to three univariate indices: Dimitrov’s normalized spectral moments (NSM), Gonzalez-Izal’s waveletbased indices (WI), and Talebinejad’s fractal-based Hurst Exponent (HE). Nine healthy participants completed two repetitions of fatigue tests during isometric, cyclic and random fatiguing contractions of the biceps brachii. The fatigue assessments were evaluated in terms of a modified sensitivity to variability ratio yielding the following scores (mean ± std.dev.): PCA: (12.6 ± 5.6), GMI: (11.5 ± 5.4), NSM: (10.3 ± 5.4), WI: (8.9 ± 4.6), HE: (8.0 ± 3.3). It was shown that PCA statistically outperformed WI and HE (p < 0.01) and that GMI outperformed HE (p < 0.02). There was no statistical difference among NSM, WI and HE (p > 0.2). It was found that taking the natural logarithm of NSM and WI, although reducing the parameters’ sensitivity to fatigue, increased SVR scores by reducing variability. 相似文献
7.
Wilson E Rustighi E Newland PL Mace BR 《Biomechanics and modeling in mechanobiology》2012,11(3-4):519-532
Muscle models are an important tool in the development of new rehabilitation and diagnostic techniques. Many models have been proposed in the past, but little work has been done on comparing the performance of models. In this paper, seven models that describe the isometric force response to pulse train inputs are investigated. Five of the models are from the literature while two new models are also presented. Models are compared in terms of their ability to fit to isometric force data, using Akaike’s and Bayesian information criteria and by examining the ability of each model to describe the underlying behaviour in response to individual pulses. Experimental data were collected by stimulating the locust extensor tibia muscle and measuring the force generated at the tibia. Parameters in each model were estimated by minimising the error between the modelled and actual force response for a set of training data. A separate set of test data, which included physiological kick-type data, was used to assess the models. It was found that a linear model performed the worst whereas a new model was found to perform the best. The parameter sensitivity of this new model was investigated using a one-at-a-time approach, and it found that the force response is not particularly sensitive to changes in any parameter. 相似文献
8.
Electromechanical delay in the vastus lateralis muscle during dynamic isometric contractions 总被引:2,自引:0,他引:2
E. J. Vos M. G. Mullender G. J. van Ingen Schenau 《European journal of applied physiology and occupational physiology》1990,60(6):467-471
Electromechanical delay (EMD) values were obtained using a cross-correlation technique for a series of 14 repetitive submaximal dynamic isometric contractions of the vastus lateralis performed by five subjects. To avoid a phase lag, which is introduced with one-way filtering, the EMG was processed with a bi-directional application of a second-order Butterworth filter. A mean EMD value of 86 ms (SD = 5.1 ms) was found. Moreover, contraction and relaxation delays were computed and compared. There was a significant difference between the contraction and relaxation delays (P less than 0.005). The mean contraction delay was 81.9 ms and the mean relaxation delay was 88.8 ms. Despite this significant difference, the computed contraction and relaxation delay values lie in the same range as the total phase lag, calculated with the cross-correlation technique. The magnitude of EMD values found supports the need to account for this delay when interpreting temporal aspects of patterns of intermuscular coordination. 相似文献
9.
10.
M Okada 《European journal of applied physiology and occupational physiology》1987,56(4):482-486
To elucidate the influence of muscle length on surface EMG wave form, comparisons were made of surface EMGs of the biceps and triceps brachii muscles during isometric contractions at different muscle lengths. Muscle lengths were altered by setting the elbow joint angle at several intervals between the limits of extension and flexion. The intensity of the isometric contractions was 25% of maximum voluntary contraction at the individual joint angles. Slowing was obvious in the EMG wave forms of biceps as muscle length increased. The so-called 'Piper rhythm' appeared when the muscle was more than moderately lengthened. The slowing trend with muscle lengthening, though less marked, was also seen in triceps. Zero-cross analysis revealed quasi-linear relationships between muscle length and slowing. Frequency analysis confirmed the development of 'Piper rhythm'. An attempt was made to interpret the slowing associated with muscle lengthening in terms of the propagation of myoelectric signals in muscle fibers. given the effect of muscle length on EMG wave forms, a careful control of joint angle may be required in assessing local making fatigue when using EMG spectral indices. 相似文献
11.
During contractions, there is a net efflux of phosphate from skeletal muscle, likely because of an elevated intracellular inorganic phosphate (P(i)) concentration. Over time, contracting muscle could incur a substantial phosphate deficit unless P(i) uptake rates were increased during contractions. We used the perfused rat hindquarter preparation to assess [(32)P]P(i) uptake rates in muscles at rest or over a range of energy expenditures during contractions at 0.5, 3, or 5 Hz for 30 min. P(i) uptake rates were reduced during contractions in a pattern that was dependent on contraction frequency and fiber type. In soleus and red gastrocnemius, [(32)P]P(i) uptake rates declined by approximately 25% at 0.5 Hz and 50-60% at 3 and 5 Hz. Uptake rates in white gastrocnemius decreased by 65-75% at all three stimulation frequencies. These reductions in P(i) uptake are not likely confounded by changes in precursor [(32)P]P(i) specific activity in the interstitium. In soleus and red gastrocnemius, declines in P(i) uptake rates were related to energy expenditure over the contraction duration. These data imply that P(i) uptake in skeletal muscle is acutely modulated during contractions and that decreases in P(i) uptake rates, in combination with expected increases in P(i) efflux, exacerbate the net loss of phosphate from the cell. Enhanced uptake of P(i) must subsequently occur because skeletal muscle typically maintains a relatively constant total phosphate pool. 相似文献
12.
A procedure is described for obtaining records and identifying curves of isotonic and isometric contractions (both tetanic and twitch) of the gastrocnemius muscle of the rabbit in situ. The experimental conditions have made it possible to follow the above mentioned phenomena and to measure further parameters in series at sequentially altered muscle lengths and loads acting in the course of isotonic contractions. 相似文献
13.
14.
Firing rates of motor units and surface EMG were measured from the triceps brachii muscles of able-bodied subjects during brief submaximal and maximal isometric voluntary contractions made at 5 elbow joint angles that covered the entire physiological range of muscle lengths. Muscle activation at the longest, midlength, and shortest muscle lengths, measured by twitch occlusion, averaged 98%, 97%, and 93% respectively, with each subject able to achieve complete activation during some contractions. As expected, the strongest contractions were recorded at 90 degrees of elbow flexion. Mean motor unit firing rates and surface EMG increased with contraction intensity at each muscle length. For any given absolute contraction intensity, motor unit firing rates varied when muscle length was changed. However, mean motor unit firing rates were independent of muscle length when contractions were compared with the intensity of the maximal voluntary contraction (MVC) achieved at each joint angle. 相似文献
15.
16.
Length-force characteristics of aponeurosis of rat gastrocnemius medialis muscle and achilles tendon were studied for passive and active muscle. Active muscle performed isometric as well as slow concentric and eccentric contractions at low velocity. For isometric conditions, different aponeurosis and tendon length-force characteristics were found between passive and active muscle: At comparable low levels of force longer aponeuroses were encountered in passive than in active muscle. Similar results were found for achilles tendon, but the magnitude of the length change involved was smaller than for aponeurosis. For active muscle, no differences of aponeurosis length- force characteristics could be distinguished between the isometric contractions and a slow concentric contraction. Indications that such differences of aponeurosis length-force characteristics may exist between slow concentric and eccentric contractions were found. It is concluded that, for gastrocnemius medialis muscle, aponeurosis and tendon length - force characteristics may be quite variable depending on recent history of muscle length and activity. 相似文献
17.
Energy liberation and chemical change in frog skeletal muscle during single isometric tetanic contractions 总被引:1,自引:4,他引:1
下载免费PDF全文

《The Journal of general physiology》1975,65(1):1-21
Recent data obtained from Rana temporaria sartorius muscles during an isometric tetanus indicate that the time-course of phosphocreatine (PC) splitting cannot account for the total energy (heat + work) liberation (Gilbert et al. 1971. J. Physiol. (Lond.) 218:)63). As this conclusion is important to an understanding of the chemical energetics of contraction, similar experments were performed on unpoisoned, oxygenated Rana pipiens sartorius muscles. The muscles were tetanized (isometrically) at 0 degrees C for 0.6, 1, or 5 s; metabolism was rapidly arrested by freezing the muscles with a specially designed hammer apparatus, and the frozen muscles were chemically analyzed. Comparable myothermal measurments were made on frogs from the same batch. Results of these experiments indicate: (a) The energy liberation parallels the PC and ATP breakdown with a proportionality constant of 10.7 kcal/mol; (b) comparably designed experiments with sartorius muscles of R. temporaria revealed that the ratio of energy liberation to PC splitting was significantly greater than that observed in R. pipiens sartorius muscles; (c) there is no systematic difference between experiments in which metabolism was arrested by the hammer apparatus and others using a conventional immersion technique. 相似文献
18.
Carlo J. De Luca 《Biological cybernetics》1975,19(3):159-167
A model for the motor-unit action-potential train is developed, based on previously obtained empirical information. The auto and cross-correlation functions are calculated. The autocorrelation function is used to derive the mean rectified value, the variance and the root-mean-squared value of a motor-unit action-potential train. These parameters are solved by using two approximations for the motor-unit action-potential; a piece-wise approximation and a Dirac Delta function approximation. The Dirac Delta function approximation sufficiently simplifies the mathematics so that the model can be extended to myoelectric signals. The cross-correlation function contains information about the synchronization of motorunit action-potential trains that may be useful as an objective indicator of muscle fatigue. 相似文献
19.
Shi Zhou David L. Lawson William E. Morrison Ian Fairweather 《European journal of applied physiology and occupational physiology》1995,70(2):138-145
Electromechanical delay (EMD) in isometric contractions of knee extensors evoked by voluntary, tendon reflex (TR) and electrical stimulation (ES) was investigated in 21 healthy young subjects. The subject performed voluntary knee extensions with maximum effort (maximal voluntary contraction, MVC), and at 30%, 60% and 80% MVC. Patellar tendon reflexes were evoked with the reflex hammer being dropped from 60°, 75° and 90° positions. In the percutaneous ES evoked contractions, single switches were triggered with pulses of duration 1.0 ms and of intensities 90, 120 and 150 V. Electromyograms of the vastus lateralis and rectus femoris muscles were recorded using surface electrodes. The isometric knee extension force was recorded using a load cell force transducer connected to the subject's lower leg. The major finding of this study was that EMD of the involuntary contractions [e.g. mean 22.1 (SEM 1.32) ms in TR 90°; mean 17.2 (SEM 0.62) ms in ES 150 V] was significantly shorter than that of the voluntary contractions [e.g. mean 38.7 (SEM 1.18) ms in MVC,P < 0.05]. The relationships between EMD, muscle contractile properties and muscle fibre conduction velocity were also investigated. Further study is needed to explain fully the EMD differences found between the voluntary and involuntary contractions. 相似文献
20.
Physiological characteristics of motor units in the brachioradialis muscle across fatiguing low-level isometric contractions. 总被引:1,自引:0,他引:1
Kristina M Calder Daniel W Stashuk Linda McLean 《Journal of electromyography and kinesiology》2008,18(1):2-15
The purpose of this study was to determine (i) if decomposition-based quantitative electromyography (DQEMG) could detect changes in motor unit potential (MUP) morphology and motor unit (MU) firing pattern statistics associated with muscle fatigue, (ii) if any detected changes are correlated with surface electromyographic (SEMG) signs of fatigue, and (iii) if significant fatigue-dependent changes are repeatable within individuals. Mean MU firing rates and the morphology of MUPs detected using needle and surface electrodes during constant-torque isometric contractions held until exhaustion were investigated in the brachioradialis (BR) muscle in 10 healthy volunteers (mean age=28.6 yr, SD+/-3.9). Time dependant changes were investigated using an analysis of variance with normalized time as a main effect. Partial correlation coefficients were computed using a repeated measures analysis of covariance to determine if changes in MU firing rates, needle-detected MUPs and surface-detected MUPs (SMUPs) were related to changes in SEMG signal amplitude and frequency parameters. Intraclass correlation coefficients (ICCs) were used to determine the within-subject repeatability of changes in MU firing rates, and MUP and SMUP parameters. Significant decreases in mean MU firing rates were found along with significant increases in various duration and area related parameters in both MUPs and SMUPs across the fatiguing contraction. The SEMG signal demonstrated the expected changes with fatigue: an increase in amplitude and a decrease in frequency content. SEMG amplitude was significantly positively correlated with SMUP peak-to-peak voltage (r=0.85, p<0.05), and SMUP area (r=0.86, p<0.05). Mean power frequency was significantly negatively correlated with SMUP negative peak duration (r=-0.74, p<0.05). The significant time-dependent changes were reliably observed (ICCs were 0.94 for MUP peak to peak amplitude, 0.97 for MUP area and 0.95 for MUP area to amplitude ratio, 0.95 for SMUP peak-to-peak voltage, 0.83 for SMUP area, 0.99 for SMUP negative peak amplitude and 0.88 for SMUP negative peak area). The decreases in mean MU firing rates measured along with the increases in amplitude, duration and area parameters of MUPs and SMUPs and their partial correlation with SEMG amplitude during submaximal fatiguing contractions of the BR, suggest that recruitment is a main cause of increased SEMG amplitude parameters with fatigue. We conclude that DQEMG can be effectively and reliably used to detect changes in physiological characteristics of MUs that accompany fatigue. 相似文献