首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The development of resistance in aphid populations highlights the importance of biological control as a pest management tactic. Four treatments were evaluated to determine the effects of pesticides on the population dynamics of Aphis gossypii Glover and Neozygites fresenii (Nowakowski) Batko: (1) weekly applications of the insecticide imidacloprid (Provado 1.6 F); (2) weekly applications of the fungicide chlorothalonil (Bravo 720); (3) applications of imidacloprid (Provado 1.6 F) when aphid densities exceeded 30 aphids per leaf, and (4) untreated control. Differences in aphid density among the four treatments were shown only to be significant during the 1997 growing season; however, aphid densities were greater in the chlorothalonil treatment than in the other treatments during each growing season. Percentage of N. fresenii-killed aphids was most often highest in the chlorothalonil treatment as well. The fungal epizootic caused by N. fresenii was delayed approximately 1 wk in the chlorothalonil treatment when compared with the other treatments. This delay allowed the aphids to temporarily escape suppression by the fungus and to continue to increase in density until the density-dependent effects of the epizootic overwhelmed the aphid population. N. fresenii also appeared to persist in the system when imidacloprid was in use and does appear responsible for initial aphid reductions. Treatment did not appear to have a large influence on yield outcome. Yield was variable from year to year and from location to location.  相似文献   

3.
In 1996 and 1997 a field survey of the abundance and species composition of cereal aphid primary and secondary parasitoids in spring barley, winter wheat and durum wheat was conducted in Zealand, Denmark. The purpose was to create a better understanding of the mechanisms underlying aphid–parasitoid dynamics in the field. Such an understanding can be used when developing biological control methods in cereals. In both years aphid attacks in cereals began in late June and never exceeded the economic threshold. In 1996 the first aphids were found in wheat on 26 June; in 1997 the first aphids were found on 24 June on both crops. The highest densities reached in 1996 were an average of six aphids per shoot in winter wheat and one aphid per shoot in spring barley. In 1997 the highest densities reached were 11 aphids per shoot in winter wheat and four aphids per shoot in spring barley. The aphid population collapsed by the end of July to early August in 1996, but it collapsed by mid-July in 1997. The onset and peak of parasitization were delayed in comparison to aphid infestation. Parasitism was 20–60% by the end of the cropping season in spring barley, and 30–80% in winter wheat and durum wheat in 1996. In 1997 parasitism did not exceed 3–11% in barley and was less than 2% in one winter wheat field but more than 40% in the other winter wheat field sampled. In both years most parasitism was due to Aphidiidae (Hymenoptera). The two dominant species were Aphidius ervi Haliday and Aphidius rhopalosiphi De Stefani-Perez. Hyperparasitism began after primary parasitism and increased progressively during the cropping season. The two years were similar in many respects, including for species composition of aphids and parasitoids. The late start of the aphid infestation may have contributed to the high level of parasitization found in 1996, but in 1997 the aphid infestation period was so short that a parasitoid population did not have time to build up.  相似文献   

4.
Climate change leads to phenology shifts of many species. However, not all species shift in parallel, which can desynchronize interspecific interactions. Within trophic cascades, herbivores can be top–down controlled by predators or bottom–up controlled by host plant quality and host symbionts, such as plant-associated micro-organisms. Synchronization of trophic levels is required to prevent insect herbivore (pest) outbreaks. In a common garden experiment, we simulated an earlier arrival time (~2 weeks) of the aphid Rhopalosiphum padi on its host grass Lolium perenne by enhancing the aphid abundance during the colonization period. L. perenne was either uninfected or infected with the endophytic fungus Epichloë festucae var. lolii. The plant symbiotic fungus produces insect deterring alkaloids within the host grass. Throughout the season, we tested the effects of enhanced aphid abundance in spring on aphid predators (top–down) and grass–endophyte (bottom–up) responses. Higher aphid population sizes earlier in the season lead to overall higher aphid abundances, as predator occurrence was independent of aphid abundances on the pots. Nonetheless, after predator occurrence, aphids were controlled within 2 weeks on all pots. Possible bottom–up control of aphids by increased endophyte concentrations occurred time delayed after high herbivore abundances. Endophyte-derived alkaloid concentrations were not significantly affected by enhanced aphid abundance but increased throughout the season. We conclude that phenology shifts in an herbivorous species can desynchronize predator–prey and plant–microorganism interactions and might enhance the probability of pest outbreaks with climate change.  相似文献   

5.
【目的】研究大豆播期对大豆蚜Aphis glycines Matsumura及其天敌的影响。【方法】试验在2012年、2013年进行,设置了3个大豆播期处理。每周调查播期处理田大豆蚜种群及天敌种类和数量,分析大豆蚜种群数量、种群增长率的时序动态、大豆蚜和天敌的关联度。【结果】不同播期条件下大豆蚜有翅蚜及无翅蚜的种群动态趋势基本一致,有翅蚜蚜量高峰期要早于无翅蚜1周。处理间的大豆蚜田间始见期与终见期随着播期推后而延迟,大豆蚜在田间扩散和消退的时期也随着大豆播期延后。晚播的两个处理高峰期蚜量多于或等于正常播期处理的蚜量。大豆蚜与天敌关联度随着播期的推后而变高。在调查的7种天敌中大豆蚜与异色瓢虫的关联度最高,草蛉、小花蝽和蚜茧蜂也表现较高的关联度。【结论】播期会显著影响大豆蚜的田间始见期和终见期,随着播期的推迟大豆蚜种群高峰期蚜量以及大豆蚜与天敌的关联度都会提高。  相似文献   

6.
1. A population of the Turkey-oak aphid ( Myzocallis boerneri Stroyan) was sampled at approximately weekly intervals on two Turkey-oak trees for 19 years.
2. On one tree (A), the aphids exhibited a distinct seasonal pattern with a spring increase, summer decrease, early autumn increase, and late autumn decline. On the other tree (B) the aphids remained at low densities after the decrease in summer.
3. On tree A, significant undercompensating density dependence occurred during all periods of the seasonal population development, and their strength varied little during the course of the season. On tree B, significant density dependence compensated exactly for increase, but appeared only after the decrease in summer when the population remained at very low densities for the rest of the season.
4. Density-independent weather variables affected the population dynamics very little. Their influence was marginally significant only at very low densities when the aphids were regulated exactly by compensating density-dependent factors.
5. The results suggest a curvilinear density dependence, with strong regulation at low densities, and weak at high densities. That is, this aphid was most regulated not at the peak but at the trough densities.  相似文献   

7.
Kunert G  Weisser WW 《Oecologia》2003,135(2):304-312
Natural enemies not only influence prey density but they can also cause the modification of traits in their victims. While such non-lethal effects can be very important for the dynamic and structure of prey populations, little is known about their interaction with the density-mediated effects of natural enemies. We investigated the relationship between predation rate, prey density and trait modification in two aphid-aphid predator interactions. Pea aphids (Acyrthosiphon pisum, Harris) have been shown to produce winged dispersal morphs in response to the presence of ladybirds or parasitoid natural enemies. This trait modification influences the ability of aphids to disperse and to colonise new habitats, and hence has a bearing on the population dynamics of the prey. In two experiments we examined wing induction in pea aphids as a function of the rate of predation when hoverfly larvae (Episyrphus balteatus) and lacewing larvae (Chrysoperla carnea) were allowed to forage in pea aphid colonies. Both hoverfly and lacewing larvae caused a significant increase in the percentage of winged morphs among offspring compared to control treatments, emphasising that wing induction in the presence of natural enemies is a general response in pea aphids. The percentage of winged offspring was, however, dependent on the rate of predation, with a small effect of predation on aphid wing induction at very high and very low predation rates, and a strong response of aphids at medium predation rates. Aphid wing induction was influenced by the interplay between predation rate and the resultant prey density. Our results suggests that density-mediated and trait-mediated effects of natural enemies are closely connected to each other and jointly determine the effect of natural enemies on prey population dynamics.  相似文献   

8.
We interpret gradients in population dynamics of the gray-sided vole from the southwestern part of the island of Hokkaido to its northeastern part within the framework of a phenomenological model involving the relative length of summer and winter. In Hokkaido, as in other northern regions, both spring and fall is considered as short transition periods between the two main seasons — summer (the primary breeding season) and winter (the non-reproductive or secondary breeding season). We show that the geographic transition in dynamics may be understood as the combined consequence of different patterns of density-dependence during summer and winter, and geographically varying season lengths. Differences are shown to exist between summer and winter with respect to strength of density-dependence. Direct density-dependence, in particular, is stronger during winter than during summer. A model is presented to show how relative lengths of seasons can induce both stable and periodically fluctuating population dynamics. The results are compared and contrasted with what is otherwise known about the gradient in rodent dynamics in Fennoscandia.  相似文献   

9.
Soybean varieties that exhibit resistance to the soybean aphid Aphis glycines have been developed for use in North America. In principle, host-plant resistance to soybean aphid can influence the interactions between the soybean aphid and its natural enemies. Resistance could change the quality of soybean aphids as a food source, the availability of soybean aphids, or resistance traits could directly affect aphid predators and parasitoids. Here, we focus on the effect of soybean aphid resistance on the interactions between soybean aphids, the parasitoid Binodoxys communis (Hymenoptera: Braconidae), and predators of these two species. We determined whether host-plant resistance affected within-season persistence of B. communis by releasing parasitoids into resistant and susceptible soybean plots. We observed higher B. communis densities in susceptible soybean plots than in resistant plots. There were also higher overall levels of intraguild predation of B. communis in susceptible plots, although the per-capita risk of intraguild predation of B. communis was affected neither by plant genotype nor by aphid density. We discuss these effects and whether they were caused by direct effects of the resistant plants on B. communis or indirect effects through soybean aphid or predators.  相似文献   

10.
The mid‐season crash in aphid populations: why and how does it occur?   总被引:7,自引:0,他引:7  
Abstract. 1. Aphid populations on agricultural crops in temperature regions collapse over a few days from peak numbers to local extinction soon after mid‐summer (e.g. mid‐July in the U.K.). The populations recover 6–8 weeks later. There is anecdotal or incidental evidence of an equivalent mid‐season population crash of aphids on grasses and forbs in natural vegetation. 2. The ecological factors causing the mid‐season population crash of aphids include a decline in plant nutritional quality and increased natural enemy pressure as the season progresses. Extreme weather events, e.g. severe rainstorms, can precipitate the crash but weather conditions are not a consistent contributory factor. 3. The population processes underlying the crash comprise enhanced emigration, especially by alate (winged) aphids, depressed performance resulting in reduced birth rates, and elevated mortality caused by natural enemies. 4. Mathematical models, previously applied to aphid populations on agricultural crops, have great potential for studies of aphid dynamics in natural vegetation. In particular, they can help identify the contribution of various ecological factors to the timing of the population crash and offer explanations for how slow changes in population processes can result in a rapid collapse of aphid populations.  相似文献   

11.
Although the costs of reproduction are predicted to vary with the quality of the breeding habitat thereby affecting population dynamics and life‐history trade‐offs, empirical evidence for this pattern remains sparse and equivocal. Costs of reproduction can operate through immediate ecological mechanisms or through delayed intrinsic mechanisms. Ignoring these separate pathways might hinder the identification of costs and the understanding of their consequences. We experimentally investigated the survival costs of reproduction for adult little owls (Athene noctua) within a gradient of habitat quality. We supplemented food to nestlings, thereby relieving the parents’ effort for brood provisioning. We used radio‐tracking and Bayesian multistate modeling based on marked recapture and dead recovery to estimate survival rates of adult little owls across the year as a function of food supplementation and habitat characteristics. Food supplementation to nestlings during the breeding season increased parental survival not only during the breeding season but also during the rest of the year. Thus, the low survival of parents of unfed broods likely represents both, strong ecological and strong intrinsic costs of reproduction. However, while immediate ecological costs occurred also in high‐quality habitats, intrinsic costs carrying over to the post‐breeding period occurred only in low‐quality habitats. Our results suggest that immediate costs resulting from ecological mechanisms such as predation, are high also in territories of high habitat quality. Long‐term costs resulting from intrinsic trade‐offs, however, are only paid in low‐quality habitats. Consequently, differential effects of habitat quality on immediate ecological and delayed intrinsic mechanisms can mask the increase of costs of reproduction in low‐quality breeding habitats. Intrinsic costs may represent an underrated mechanism of habitat quality affecting adult survival rate thereby considerably accelerating population decline in degrading habitats. This study therefore highlights the need for a long‐term perspective to fully assess the costs of reproduction and the role of habitat quality in modifying these costs.  相似文献   

12.
Microbial endosymbionts alter the phenotype of their host which may have cascading effects at both population and community levels. However, we currently lack information on whether the effects of viruses on both host phenotypic traits and host population demography can modify interactions with upper trophic levels. To fill this gap, we investigated whether a prevalent densovirus infecting the aphid Myzus persicae (i.e. MpDNV) can modify trophic interactions between host aphids and their natural enemies (i.e. predators and parasitoids) by influencing aphid phenotypic traits (i.e. body mass and defensive behaviours), population demography (i.e. density and age-structure) and susceptibility towards both predation and parasitism. We found that the virus decreased aphid body mass but did not influence their behavioural defences. At the population level, the virus had a minor effect on aphid adult mortality whereas it strongly reduced the density of nymphs and influenced the stage structure of aphid populations. In addition, the virus enhanced the susceptibility of aphids to parasitism regardless of the parasitoid species. Predation rate on adult aphids was not influenced by the virus but ladybeetle predators strongly decreased the number of aphid nymphs, especially for uninfected ones compared to infected ones. As a result, the virus decreased predator effect on aphid populations. By reducing both aphid quality and availability, increasing their susceptibility to parasitism, and modulating predator effect on aphid populations, we highlighted that viral endosymbionts can be prevalent drivers of their host ecology as they modify their phenotypes and interspecific interactions. These virus-mediated ecological effects may have consequences on enemies foraging strategies as well as trophic webs dynamics and structure.  相似文献   

13.
Abstract.  1. Previous studies have demonstrated that phenotypic traits of plants have the potential to affect interactions between herbivores and their natural enemies. Consequently, the impact of natural enemies on herbivore vital rates and population dynamics may vary among plant species. This study was designed to investigate the potential for density-dependent parasitism of an aphid herbivore feeding on six different host plant species.
2. Population densities of the aphid Aphis nerii B de F (Homoptera: Aphididae) and its parasitoid Lysiphlebus testaceipes Cresson (Hymenoptera: Braconidae) were recorded within a single growing season on six different species of milkweed in the genus Asclepias L. (Asclepiadaceae). Asclepias species are known to vary in their quality as food for herbivores. Although data on plant quality were not available in this study, population data were analysed to determine the effects of different Asclepias species on rates of parasitism and aphid population growth.
3. Parasitism rates of A. nerii varied among Asclepias species but were temporally density dependent over at least some range of aphid density on all plant species. Aphid population growth rates also varied among Asclepias species, and declined with an increase in the maximum parasitism rates among plant species; however, in no case was density-dependent parasitism sufficient to prevent exponential population growth of aphids within the growing season. The results serve to emphasise that, if natural enemies are to regulate herbivore populations, density-dependent mortality is a necessary, but not sufficient, condition for regulation.  相似文献   

14.
  • 1 The present study evaluated the population dynamics of the heteroecious soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae) during an 8‐year period in Indiana, shortly after its detection in North America. Sampling conducted at multiple locations revealed that A. glycines exhibited a 2‐year oscillation cycle that repeated itself four times between 2001 and 2008: years of low aphid abundance were consistently followed by years of high aphid abundance.
  • 2 Similar patterns of abundance of A. glycines and coccinellids (Coleoptera: Coccinellidae) in soybean fields, both within and between‐years, suggest that late season predation by coccinellids plays a role in the oscillatory cycle of aphids. Insidious flower bugs Orius insidiosus (Say) (Hemiptera: Anthocoridae) were numerically more abundant than coccinellids, although the lack of synchrony between aphids and predatory bugs suggests that O. insidiosus has a limited influence on between‐year variations in aphid density.
  • 3 The inverse relationship between aphid densities before and after the start of the autumn migratory period changes direction in alternate years. High aphid density on soybean in the summer is associated with a reduced number of alate migrants produced in the autumn. Conversely, years with low density aphids on soybean in the summer are characterized by high numbers of alates that migrate to the primary host in the autumn.
  • 4 From a pest management perspective, the 2‐year oscillation cycle of A. glycines is a desirable attribute with respect to population dynamics because it implies that aphids cause significant economic damage only in alternate years (as opposed to every year). Cultural practices enhancing the conservation biological control of Coccinellidae may help to preserve the periodicity of aphid infestation and restrict the pest status of A. glycines.
  相似文献   

15.
甘蓝和白菜上桃蚜种群的空间格局及其时序动态   总被引:12,自引:0,他引:12  
刘树生  汪信庚 《昆虫学报》1996,39(2):158-165
1999-1992年在杭州郊区菜区连续调查了10茬结球甘蓝、19茬白菜上桃蚜Myzus Persicae种群的分布图式。利用这些数据计算出多项空间聚集指标,分析了各项指标与密度的相关性,然后选择受密度影响较小的负二项分布的K值,描述了种群的空间格局及其时序动态。两类蔬菜上桃蚜种群全年呈聚集分布;但聚集强度变化有明显的季节规律。一年中5月和11月前后有两个明显的扩散高峰;在蚜虫迁离本田的6~7月和重新迁入本田的9-10月前后则有两个聚集高峰。在一季作物上的聚集强度随时间的变化过程因季节而异,春夏季为高一低一高,秋冬季从高往低呈持续下降,而冬春季则呈上下随机波动趋势,文中最后对桃蚜种群空间图式及其时序动态特征的成因,尤其是气温和植株营养条件变化的影响进行了讨论。  相似文献   

16.
We present a model on plant-deer climate interactions developed for improving our understanding of the temporal dynamics of deer abundance and, in particular, how intrinsic (density-dependent) and extrinsic (plants, climate) factors influence these dynamics. The model was tested statistically by analysing the dynamics of five Norwegian red deer populations between 1964 and 1993. Direct and delayed density-dependence significantly influenced the development of the populations: delayed density-dependence primarily operated through female density, whereas direct density-dependence acted through both female and male densities. Furthermore, population dynamics of Norwegian red deer were significantly affected by climate (as measured by the global weather phenomenon, the North Atlantic Oscillation: NAO). Warm, snowy winters (high NAO) were associated with decreased deer abundance, whereas the delayed (two-year) effect of warm, snowy winters had a positive effect on deer abundance. Our analyses are argued to have profound implications for the general understanding of climate change and terrestrial ecosystem functioning.  相似文献   

17.
This study aims to quantify the relative effects of density-dependent (feedback structure) and density-independent climatic factors (rainfall) in regulating the short-term population dynamics of wood mice Apodemus sylvaticus Linnaeus, 1758 in three Mediterranean forest plots. Rainfall and density explained additively 62% of variation in population growth rates (38 and 24%, respectively), with no differences among study plots. Population growth rate was positive during autumn–winter and negative during spring–summer during a 2.5-year period. Population rate of change was negatively affected by wood mouse density during the normal breeding season of Mediterranean mice (autumn–winter) but not outside it. Growth rate was positively affected by the cumulative amount of rainfall three months before the normal breeding season, but not during it. Female breeding activity and recruitment did not differ among plots, and was not affected by density or rainfall. However, recruitment was positively affected by density and, marginally, by rainfall. Our results suggest that intraspecific competition (density-dependence) and food availability (rainfall) are equally important factors driving wood mouse population dynamics in Mediterranean forests. Mechanisms underlying density-dependence during the breeding season seemed to be based on food-mediated survival rather than on behaviourally-mediated reproduction. Taken together, these results indicate a high sensitivity of marginal Mediterranean wood mouse populations to the expected climate changes in the Mediterranean region.  相似文献   

18.
1. The abundance of insect herbivores is mediated by interactions with higher and lower trophic levels. This research asks (i) how phenological change across trophic levels affects host plant quality and selection for aphids, and (ii) what higher trophic level mechanisms drive aphid abundance. 2. Ligusticum porteri is a perennial host for the sap-feeding aphid Aphis asclepiadis and intraguild mirid predators (chiefly Lygus hesperus) in Colorado. We used long-term observational data to discover that aphids and mirids respond differently to phenological cues. These unique responses can impact aphid abundance through changes to host plant selection and quality. 3. We used behavioural choice assays to assess how advanced mirid phenology influences aphid host plant selection. More alates landed and reproduced on mirid-free control plants relative to host plants with prior mirid feeding. However, this preference did not correlate with aphid performance when we compared aphid relative growth rates between treatments. This suggests that advanced mirid phenology would impact aphid populations more through host plant choice, rather than reductions in host quality. The addition of mirids to experimental aphid colonies also demonstrated reduced aphid colony growth via predation. 4. We measured plant cues involved in host selection and found differences in volatile composition between plants with prior mirid feeding compared to control plants, providing the potential for aphids to detect enemy-free space using volatile cues.  相似文献   

19.
There is increasing evidence that top-down controls have strong non-consumptive effects on herbivore populations. However, little is known about how these non-consumptive effects relate to bottom-up influences. Using a series of field trials, we tested how changes in top-down and bottom-up controls at the within-plant scale interact to increase herbivore suppression. In the first experiment, we manipulated access of natural populations of predators (primarily lady beetles) to controlled numbers of A. glycines on upper (i.e. vigorous-growing) versus lower (i.e. slow-growing) soybean nodes and under contrasting plant ages. In a second experiment, we measured aphid dispersion in response to predation. Bottom-up and top-down controls had additive effects on A. glycines population growth. Plant age and within-plant quality had significant bottom-up effects on aphid size and population growth. However, top-down control was the dominant force suppressing aphid population growth, and completely counteracted bottom-up effects at the plant and within-plant scales. The intensity of predation was higher on upper than lower soybean nodes, and resulted in a non-consumptive reduction in aphid population growth because most of the surviving aphids were located on lower plant nodes, where rates of increase were reduced. No effects of predation on aphid dispersal among plants were detected, suggesting an absence of predator avoidance behavior by A. glycines. Our results revealed significant non-consumptive predator impacts on aphids due to the asymmetric intensity of predation at the within-plant scale, suggesting that low numbers of predators are highly effective at suppressing aphid populations.  相似文献   

20.
While many studies have demonstrated that ants provide beneficial services to aphids, Bristow (Ant-plant interactions, Oxford University Press, Oxford, 104–119, 1991) first questioned why so few aphid species are ant-attended. Phylogenetic trees have demonstrated multiple gains and loss of ant-attendance in the course of aphid-ant interactions, implying that mutualisms easily form and dissolve. Several studies have reported the factors that influence the formation and maintenance of aphid-ant interactions. Examples include the physiological costs of ant attendance, competition for mutualistic ants, ant predation on aphids, the influence of host plants, and parasitoid wasps. Recent physiological techniques have also revealed the chemical component of aphid-ant mutualisms. The honeydew of ant-attended aphids contains melezitose (a trisaccharide), which has an important role in aphid-ant interactions. Studies of cuticular hydrocarbons on aphids and ants have clarified the underlying mechanisms of ant predation on aphids. Attending ants also reduce aphid dispersal ability, causing the formation of fragmented aphid populations with low genetic diversity in each population. The reduced aphid dispersal could be partly explained by higher wing loading and reduction of flight apparatus due to ant attendance. Whether ant attendance is associated with the range of host plants of aphids or genetic variation in microorganism in aphids remain to be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号