首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the phosphoglycerate kinase (PGK) gene of yeast, as in other highly expressed yeast genes, the sequences surrounding the site of RNA initiation have a loosely conserved structure of a CT rich stretch followed by the tetranucleotide CAAG. Using internal deletions and insertions we have identified the elements in the PGK promoter which are required for correct RNA initiation at the CAAG sequence at -39. The results indicate that two different components of the PGK promoter contribute to correct RNA initiation, the TATA homologies, located at -152 and -113, and the sequences at the site of initiation. Both TATA elements can function in RNA initiation. Deletion of the upstream TATA element, TATAI, results in slightly heterogeneous RNA initiation, but the majority of the RNA initiates correctly. Deletion of both the PGK TATA elements results in the majority of the RNA initiating at sites downstream from the wild-type I site, within the structural gene between +40 to +80. The CT rich box is not essential for correct mRNA initiation as shown by deletion analysis. The site of RNA initiation in the PGK promoter appears to be determined by sequences located immediately 5' of the CAAG sequence motif. This short sequence, ACAGATC, when located the correct distance from the TATA elements may be sufficient to determine a discrete initiation site.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
We have made deletions of the HIS4 5' noncoding region in vitro and inserted these deletions into the yeast genome by transformation. Deletions that extend from -588 to -235 have no detectable effects on either promoter or regulatory functions. Deletions that extend to -138 affect promoter function, but are still regulated by the general control of amino acid biosynthesis. A deletion that extends to -136 cannot derepress HIS4 mRNA in response to the general control. This deletion removes all copies of the sequence 5'-TGACTC-3', which appears at positions -194, -182 and -138 in strains without the deletion. The importance of at least one copy of this repeat for regulation of HIS4 is shown by the reappearance of this sequence in revertants of the -136 deletion that have regained the regulatory response. The fact that deletion of this sequence leads to the inability to derepress suggests that HIS4 is under positive control.  相似文献   

13.
The complete nucleotide sequence of the Corynebacterium glutamicum hom-thrB operon has been determined and the structural genes and promoter region mapped. A polypeptide of Mr 46,136 is encoded by hom and a polypeptide of Mr 32,618 is encoded by thrB. Both predicted protein sequences show amino acid sequence homology to their counterparts in Escherichia coli and Bacillus subtilis. The promoter region has been mapped by S1-nuclease and deletion analysis. Located between -88, RNA start site and -219 (smallest deletion clone with complete activity) are sequence elements similar to those found in E. coli and B. subtilis promoters. Although there are no obvious attenuator-like structures in the 5'-untranslated region, there is a dyad-symmetry element, which may act as an operator.  相似文献   

14.
15.
16.
17.
18.
Wolf J  Gerber AP  Keller W 《The EMBO journal》2002,21(14):3841-3851
We report the characterization of tadA, the first prokaryotic RNA editing enzyme to be identified. Escherichia coli tadA displays sequence similarity to the yeast tRNA deaminase subunit Tad2p. Recombinant tadA protein forms homodimers and is sufficient for site-specific inosine formation at the wobble position (position 34) of tRNA(Arg2), the only tRNA having this modification in prokaryotes. With the exception of yeast tRNA(Arg), no other eukaryotic tRNA substrates were found to be modified by tadA. How ever, an artificial yeast tRNA(Asp), which carries the anticodon loop of yeast tRNA(Arg), is bound and modified by tadA. Moreover, a tRNA(Arg2) minisubstrate containing the anticodon stem and loop is sufficient for specific deamination by tadA. We show that nucleotides at positions 33-36 are sufficient for inosine formation in mutant Arg2 minisubstrates. The anticodon is thus a major determinant for tadA substrate specificity. Finally, we show that tadA is an essential gene in E.coli, underscoring the critical function of inosine at the wobble position in prokaryotes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号