首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Island biogeography theory, created initially to study diversity patterns on islands, is often applied to habitat fragments. A key but largely untested assumption of this application of theory is that landscape matrix species composition is non‐overlapping with that of the islands. We tested this assumption in successional old field patches in a closely mowed matrix, and because our patches are appropriately viewed as sets of contiguous habitat units we studied patterns of species richness per unit area. Previous studies at our site did not find that diversity patterns on patch ‘islands’ conformed to predictions of island biogeography theory. Our results indicate that when matrix species are removed from the patch samples, diversity patterns conform better to theory. We suggest that classical island theory remains an appropriate tool to study diversity patterns in fragmented habitats, but that allowances should be made for spill‐over colonization of ‘islands’ from the ‘sea’.  相似文献   

2.
We explore the effect of land‐use change from extensively used grasslands to intensified silvi‐ and agricultural monocultures on metacommunity structure of native forests in Uruguay. We integrated methods from metacommunity studies, remote sensing, and landscape ecology to explore how woody species distribution was influenced by land‐use change from local to regional scale. We recorded richness and composition of adult and juvenile woody species from 32 native forests, created land‐use maps from satellite image to calculate spatial metrics at landscape, class, and patch levels. We also analyzed the influence of land use pattern, climate, topography, and geographic distance between sites (d) on metacommunity, and created maps to visualize species richness and (dis)similarity between communities across the country. Woody species communities were distributed in a discrete pattern across Uruguay. Precipitation and temperature seasonality shaped species distribution pattern. Species richness and community dissimilarity increased from West to East. Latitude did not influence these patterns. Number of patches, landscape complexity, and interspersion and juxtaposition indexes determine woody species distribution at landscape level. Increasing areas covered by crops and timber plantation reduced species richness and increased community dissimilarity. The spatial metrics of native forest fragments at patch level did not influence metacommunity structure, species richness, and community dissimilarity. In conclusion, Uruguayan native forests display a high range of dissimilarity. Pressure of neighborhood land uses was the predominant factor for species assemblages. Conserving landscape structures that assure connectivity within and among native forest patches is crucial. On sites with rare target species, the creation of alliances between governmental institution and landowner complemented by incentives for biodiversity conservation provides opportunities to advance in species protection focused on those less tolerant to land‐use change.  相似文献   

3.
Lack of landscape connectivity and habitat loss is major threats to biodiversity and ecosystem integrity in nature reserves aimed at conservation. In this study, we used structural pattern and functional connectivity metrics to analyze the spatial patterns and landscape connectivity of habitat patches for the Shangyong sub-reserve of the Xishuangbanna Nature Reserve from 1970, 1990, and 2000. On the basis of vegetation and land cover data, we applied the equivalent connected area ECA(PC) indicator to analyze the changes in forest connectivity. Four distance thresholds (2, 4, 8, 12 km) were considered to compare the patch importance of connectivity by dECA values. The results showed the declining trends of landscape connectivity measured by ECA(PC) index from 1970 to 2000. The importance of connectivity in each forest patch varied with the increment of dispersal distances at the patch level, and some important habitat patches, which exhibit a potential to enhance landscape connectivity, should be given more attention. The least-cost pathways based on network structure were displayed under four dispersal distances in three periods. The results showed that the number of paths among the fragments of forest patches exhibited radical increases for larger dispersal distances. Further correlation analyses of AWF, ECA (IIC), and ECA (PC) showed the weakest and least-frequent correlations with the structural pattern indices, while H presented more significant correlations with the PD fragmentation metric. Furthermore, Kendall's rank correlations between the forest patch area and functional connectivity indicators showed that dECA (PC) and dAWF indicators should provided the area-based prioritization of habitat patches. Moreover, the low-rank correlations showed that dF and dLCP can be considered as effective and appropriate indicators for the evaluation of habitat features and network patterns.  相似文献   

4.
一种新的景观扩张指数的定义与实现   总被引:5,自引:0,他引:5  
武鹏飞  周德民  宫辉力 《生态学报》2012,32(13):4270-4277
景观格局动态信息的定量表达始终是景观生态学研究的一个重要科学问题,景观格局指数是其中的一种重要方法,但其多是静态指数,难以有效定量表达景观格局的动态信息.因此,针对景观扩张过程以斑块扩张面积为基础提出了一种新的景观扩张指数,来表达景观格局的动态信息.并以妫水河流域1998-2009年的景观农田化过程为例,验证该指数的适用性,结果表明:该指数不仅能够定量表达斑块的空间扩张规模,而且可以准确识别斑块的空间扩张模式.根据扩张斑块与原斑块的空间位置关系,将景观的空间扩张模式划分为邻接扩张式和外部扩张式两种.提出的景观扩张指数在技术方法上计算简便,易于实现,完善了景观格局动态的量化表征科学方法.  相似文献   

5.
The assessment of landscape spatial patterns is a key issue in landscape management. Landscape pattern indices (LPIs) are tools appropriate for analyzing landscape spatial patterns. LPIs are often derived from raster land cover maps that are extracted from remotely sensed data through hard classification. However, pixel-based hard classification methods suffer from the mixed pixel problem (in which pixels contain more than one land cover class), making for inaccurate classification maps and LPIs. In addition, LPIs generated by hard classification methods are characterized by grain sizes (the sampling unit sizes) that limit the derived landscape pattern to a certain scale. Sub-pixel mapping (SPM) models can enable fine-scale estimation of the spatial patterns of land cover classes without requiring additional data; hence, this is an appropriate downscaling method for land cover mapping. The fraction images generated by soft classification estimate the area proportion of each land cover class within each pixel, and using these images as input enables SPM models to alleviate the mixed pixel problem. At the same time, by transforming fraction images into a finer-scaled hard classification map, SPM models can minimize the influence of grain size on LPIs calculation. In this research, simulated landscape thematic patterns that can provide different landscape spatial patterns, eight commonly used LPIs and a SPM model that maximizes the spatial dependence between neighbouring sub-pixels were applied to assess the efficiency of deriving LPIs from sub-pixel model maps. Results showed that the SPM model can more precisely characterize landscape patterns than hard classification methods can. Landscape fragmentation, class abundance, the uncertainty in SPM, and the spatial resolution of the remotely sensed data influenced LPIs derived from sub-pixel maps. The largest patch index, landscape division, and patch cohesion derived from remotely sensed data with different spatial resolutions through the SPM model were suitable for inter-comparison, whereas the patch density, mean patch area, edge density, landscape shape index, and area-weighted mean shape index derived from the sub-pixel maps were sensitive to the spatial resolution of the remotely sensed data.  相似文献   

6.
中性景观模型与真实景观的一致性   总被引:3,自引:0,他引:3  
采用RULE和SimMap中性景观模型,使其形成模拟景观的图幅大小、景观内各类型数目以及各类型之间的比例等项与真实景观相同,通过不同景观指标对中性模型系列的反应,看其在多大程度上代替真实景观.研究发现,中性景观模型在斑块数、斑块周长、聚集度、蔓延度以及孔隙度等指标所反映的格局特征方面,能很好地代替真实景观,而在校正斑块周长面积比、分维数以及边界分布均匀度等指标所反映的格局特征方面,并不能很好地代替真实景观,说明中性景观模型只能在一定的范围内可以代替真实景观。而不能完全取而代之.  相似文献   

7.
The ridge–slough landscape of the Everglades (Florida, USA), is characterized by elevated ridges dominated by sawgrass (Cladium jamaicense) interspersed among deeper sloughs dominated by floating, submerged and emergent macrophytes and calcareous periphyton. Interactions among hydrologic conditions (water depth, hydroperiod), plant composition and production, and respiration are hypothesized to create alternative peat accretion equilibria at the point scale, while spatial interactions among patches create regular pattern at the landscape scale. Despite significant research on these interactions, few studies have examined the hypothesis that the ridge–slough landscape consists of spatially coupled alternative stable patch states, and none has used diagnostic indicators thereof to assess landscape resilience to hydrologic change. Dense random sampling of water depths (a proxy for soil elevation) along a gradient of hydrologic impairment of drained to relatively natural to impounded conditions was used to evaluate four predictions related to this hypothesis: (1) bimodal soil elevation distributions show strong fidelity to community type; (2) positive autocorrelation at short distances with negative values at longer distances; (3) strong anisotropy (diagnostic of flow orientation), and spatial structure (diagnostic of the strength of landscape self-organization); and (4) loss of these features with hydrologic modification. Our results support the hypothesis that soil elevations are strongly bimodal and anisotropic in areas with minimal hydrologic impact, and spatial autocorrelation patterns indicate the operation of scale-dependent feedbacks. These metrics change markedly with hydrologic modification, although with differences between drainage and impoundment. Moreover, changes in landform precede associated changes in vegetation, suggesting their utility as diagnostic indicators of landscape degradation and recovery.  相似文献   

8.
Jensen  Susan  Bell  Susan 《Plant Ecology》2001,155(2):201-217
By examining the spatial distribution of rhizome morphological characteristics of the seagrass Halodule wrightii, in relation to a seasonal pattern of seagrass patch dynamics, we attempted to derive a mechanistic explanation for the variety of changes exhibited by seagrass patch shapes. Rhizome morphological characteristics (mean internodal distance, branching frequency and biomass) were measured at three spatially-recognized regions (Flood edge, Center, Ebb edge) of 5 seagrass patches, reflecting position relative to hydrodynamic flow. In addition, maps (1 resolution) of the seagrass patches were used to quantify changes in seagrass patch margins across the growing season. Rhizome morphological characteristics varied with spatial position: longer internodal distances were recorded on both edges of the patch relative to patch center, and rhizomes from Flood edges exhibited longer internodes than plants on the Ebb edge of patches. Branching frequency showed no spatially-explicit distribution across the seagrass patches. Patch change analysis indicated a pattern of increase in patch area on the Flood edges of seagrass patches and recession (or no change) on the Ebb edges. Patch margin change was significantly correlated with internodal distances: the more positive the increase in patch seagrass coverage on an edge, the greater the internodal distances.Sediment nutrients were explored as a potential mechanism for the distinct spatial distribution of morphologies found; experimental addition of phosphorus, but not nitrogen, significantly altered the rhizome morphology and biomass, but measurement of ambient sediment nutrient concentrations produced no significant correlations with the in situ distribution of rhizome morphologies. These results suggest that larger-scale landscape characteristics of patch dynamics may be determined by predictable behaviors of small-scale components, but the results do not conclusively describe a mechanism for this system.  相似文献   

9.
Modelling of landscape connectivity is a key point in the study of the movement of populations within a given landscape. For studies focused on the preservation of biodiversity, graph-based methods provide an interesting framework to investigate the landscape influence on population spread processes. Such an approach is described here, based on the mapping of landscape categories in habitat patches, including a diachronic data set describing the population spread within the habitat patches. A minimum planar graph was built by computing spatial distances between all pairs of neighbouring patches. From this structure, two types of analysis are proposed: one focused on the links of the graph and consists in correlating spatial distances and gap indicators computed from the diachronic data. The other was based on the correlations between population data and connectivity metrics at the patch level. As an example, this approach was applied to the spread of the fossorial water vole on the Jura plateau (France), with annual population data covering eleven years from 1989 to 2000. Link analysis allowed to find an optimal set of resistance values used in the least-cost distances computations, and thus to build a relevant graph. From this graph, patch analysis displayed a cyclic correlation between a metric based on potential dispersal flux and the population density, outlining the strong role of landscape connectivity in the population spread. The present study clearly shows that landscape modelling and graph-based approach can produce parameters which are consistent with field observations and thus pave the way to simulating the effect of landscape modification on population dynamics.  相似文献   

10.
在北方森林中火干扰是森林景观变化的主导因素。林火烈度作为衡量林火动态的重要指标,较为直观地反映了火干扰对森林生态系统的破坏程度,其空间格局深刻地影响着森林景观中的多种生态过程(如树种组成、种子扩散以及植被的恢复)。解释林火烈度空间格局有助于揭示林火干扰后森林景观格局的形成机制,对预测未来林火烈度空间格局以及制定科学合理林火管理策略均有重要意义。基于LandsatTM/ETM遥感影像,将2000—2016年大兴安岭呼中林区的36场火的林火烈度划分为未过火、轻度、中度、重度4个等级。采用FRAGSTAT景观格局分析软件从类型水平上计算了斑块所占景观面积比、面积加权平均斑块面积、面积加权平均斑块分维数、面积加权边缘面积比、斑块密度5个景观指数,以对林火烈度空间格局进行了定量化描述。并且采用随机森林模型,分析了气候、地形、植被对林火烈度空间格局的影响及其边际效应。通过研究得出以下结果:(1)相对于未过火、轻度、以及中度火烧斑块,重度火烧斑块的面积更大、形状更简单;(2)海拔对重度火烧斑块的空间格局起着至关重要的作用,其次是坡向、坡度、植被覆盖度、相对湿度、温度等;(3)随着海拔的升高,面积加权...  相似文献   

11.
Because spatial connectivity is critical to dispersal success and persistence of species in highly fragmented landscapes, the way that we envision and measure connectivity is consequential for biodiversity conservation. Connectivity metrics used for predictive modeling of spatial turnover and patch occupancy for metapopulations, such as with Incidence Function Models (IFM), incorporate distances to and sizes of possible source populations. Here, our focus is on whether habitat quality of source patches also is considered in these connectivity metrics. We propose that effective areas (weighted by habitat quality) of source patches should be better surrogates for population size and dispersal potential compared to unadjusted patch areas. Our review of a representative sample of the literature revealed that only 12.5% of studies incorporated habitat quality of source patches into IFM-type connectivity metrics. Quality of source patches generally was not taken into account in studies even if habitat quality of focal patches was included in analyses. We provide an empirical example for a metapopulation of a rare wetland species, the round-tailed muskrat (Neofiber alleni), demonstrating that a connectivity metric based on effective areas of source patches better predicts patch colonization and occupancy than a metric that used simple patch areas. The ongoing integration of landscape ecology and metapopulation dynamics could be hastened by incorporating habitat quality of source patches into spatial connectivity metrics applied to species conservation in fragmented landscapes.  相似文献   

12.
基于GIS的上海市景观格局梯度分析   总被引:43,自引:0,他引:43       下载免费PDF全文
 定量分析景观格局及其变化对于监测和评价城市化的生态后果十分重要。该研究应用基于GIS的梯度分析与景观指数相结合的方法定量分析了上海市城市化的空间格局。沿一条自西向东64 km长6 km宽和另一条自南向北66 km长6 km宽的样带,应用移动窗口计算了一系列景观指数。结果表明,城市化的空间格局可以用梯度分析与景观指数来定量,不同的土地利用类型沿景观格局梯度确实表现出明显的“空间特征”。多项景观指数可准确地、定量地指示上海地区东西和南北发展轴线上城市化的前沿和城市景观梯度分异的特征。城市化的总体格局是随着城市化程度增加,景观在组分上更多样化,形状上更为复杂以及生态学上更破碎化。此外,该文显示的上海市城市化景观格局比较符合同心圆论的城市发展理论,研究结果支持斑块密度随城市化程度而增加,斑块大小和景观连接度则下降的假说,但与随人类干预程度增强,斑块形状变得更规则的假说不相符和,因此,需要进一步研究来证实该发现。  相似文献   

13.
Variation in the density of organisms among habitat patches is often attributed to variation in inherent patch properties. For example, higher quality patches might have higher densities because they attract more colonists or confer better post-colonization survival. However, variation in occupant density can also be driven by landscape configuration if neighboring patches draw potential colonists away from the focal habitat (a phenomenon we call propagule redirection). Here, we develop and analyze a stochastic model to quantify the role of landscape configuration and propagule redirection on occupant density patterns. We model a system with a dispersive larval stage and a sedentary adult stage. The model includes sensing and decision-making in the colonization stage and density-dependent mortality (a proxy for patch quality) in the post-colonization stage. We demonstrate that spatial variation in colonization is retained when the supply of colonists is not too high, post-colonization density-dependent survival is not too strong, and colonization events are not too frequent. Using a reef fish system, we show that the spatial variation produced by propagule redirection is comparable to spatial variation expected when patch quality varies. Thus, variation in density arising from the spatial patterning of otherwise identical habitat can play an important role in shaping long-term spatial patterns of organisms occupying patchy habitats. Propagule redirection is a potentially powerful mechanism by which landscape configuration can drive variation in occupant densities, and may therefore offer new insights into how populations may shift as landscapes change in response to natural and anthropogenic forces.  相似文献   

14.
Rethinking patch size and isolation effects: the habitat amount hypothesis   总被引:4,自引:0,他引:4  
I challenge (1) the assumption that habitat patches are natural units of measurement for species richness, and (2) the assumption of distinct effects of habitat patch size and isolation on species richness. I propose a simpler view of the relationship between habitat distribution and species richness, the ‘habitat amount hypothesis’, and I suggest ways of testing it. The habitat amount hypothesis posits that, for habitat patches in a matrix of non‐habitat, the patch size effect and the patch isolation effect are driven mainly by a single underlying process, the sample area effect. The hypothesis predicts that species richness in equal‐sized sample sites should increase with the total amount of habitat in the ‘local landscape’ of the sample site, where the local landscape is the area within an appropriate distance of the sample site. It also predicts that species richness in a sample site is independent of the area of the particular patch in which the sample site is located (its ‘local patch’), except insofar as the area of that patch contributes to the amount of habitat in the local landscape of the sample site. The habitat amount hypothesis replaces two predictor variables, patch size and isolation, with a single predictor variable, habitat amount, when species richness is analysed for equal‐sized sample sites rather than for unequal‐sized habitat patches. Studies to test the hypothesis should ensure that ‘habitat’ is correctly defined, and the spatial extent of the local landscape is appropriate, for the species group under consideration. If supported, the habitat amount hypothesis would mean that to predict the relationship between habitat distribution and species richness: (1) distinguishing between patch‐scale and landscape‐scale habitat effects is unnecessary; (2) distinguishing between patch size effects and patch isolation effects is unnecessary; (3) considering habitat configuration independent of habitat amount is unnecessary; and (4) delineating discrete habitat patches is unnecessary.  相似文献   

15.
In forest–grassland mosaics, patches can result from two processes: forest expansion over grassy ecosystems and forest fragmentation. We tested the hypothesis that patches produced by these processes differed in structure and spatial context in a forest–grassland mosaic in the southern Brazilian highlands. We compared a present‐day land cover map with a past vegetation map to identify natural forest patches and forest fragments. Patches were described according to structure (size, core area and shape metrics) and spatial context (distance from roads and urban areas, edge contrast). Principal component analyses were used to examine gradients of patch types, and differences were tested by analysis of variance with randomization test. We found 878 natural patches and 214 fragments. Natural forest patches, riparian forest patches and forest fragments differed in structure and spatial context. In comparison to natural forest patches, fragments tend to be larger, with larger core areas, and more irregular and complex in shape. Fragments are situated in a different spatial context, tending to be closer to roads and urban areas and to present higher edge contrast. Riparian natural forest patches are similar to natural forest patches, except for shape. The smaller area and regular shape of natural patches probably result from the mechanisms involved in nucleus formation in the grassland matrix and from current grassland management. Natural patches are less exposed to some anthropogenic stresses, since most of them remain in a native grassland matrix context. Our results show that inferring process from pattern is not trivial, because different processes – forest expansion and forest fragmentation – may lead to either distinct or similar patterns of patch shape and spatial context. Studying patch structure and spatial context may then provide further insight into understanding changes in vegetation pattern at landscape scale, and in disentangling the effects of concurrent processes.  相似文献   

16.

Understanding landscape impacts on gene flow is necessary to plan comprehensive management and conservation strategies of both the species of interest and its habitat. Nevertheless, only a few studies have focused on the landscape genetic connectivity of the European wildcat, an umbrella species whose conservation allows the preservation of numerous other species and habitat types. We applied population and landscape genetics approaches, using genotypes at 30 microsatellites from 232 genetically-identified wildcats to determine if, and how, landscape impacted gene flow throughout France. Analyses were performed independently within two population patches: the historical north-eastern patch and the central patch considered as the colonization front. Our results showed that gene flow occurred at large spatial scales but also revealed significant spatial genetic structures within population patches. In both population patches, arable areas, pastures and permanent grasslands and lowly fragmented forested areas were permeable to gene flow, suggesting that shelters and dietary resources are among the most important parameters for French wildcat landscape connectivity, while distance to forest had no detectable effect. Anthropized areas appeared highly resistant in the north-eastern patch but highly permeable in the central patch, suggesting that different behaviours can be observed according to the demographic context in which populations are found. In line with this hypothesis, spatial distribution of genetic variability seemed uneven in the north-eastern patch and more clinal in the central patch. Overall, our results highlighted that European wildcat might be a habitat generalist species and also the importance of performing spatial replication in landscape genetics studies.

  相似文献   

17.
黄土区农业景观空间格局分析   总被引:281,自引:27,他引:281  
傅伯杰 《生态学报》1995,15(2):113-120
景观空间格局分析是景观生态学研究的核心问题之一。本文用地理信息系统,分维分析和统计分析相结合,以1∶1万土地利用现状图为基础,选取斑块大小、分维数、斑块伸长指数、多样性、优势度、相对丰富度、破碎度等指标,陕北米脂县泉家沟流域农业景观的空间格局。结果显示,乔木林地、坡耕地、果园、草地和梯田农地的分维数较低,坝地、水库、灌溉农田、居信用地和灌木林地的人维数较高,斑块形状较为复杂。随着斑块面积的增加,农  相似文献   

18.
We employed an experimental model system to investigate the mechanisms underlying patterns of patch occupancy and population density in a high arctic assemblage of Collembola species inhabiting a sedge tussock landscape on Svalbard. The replicate model systems consisted of 5 cores of the tussocks (habitat patches) imbedded in a barren matrix. Four of the patches were open so that animals could migrate between them, while there was one closed patch per system to test the effect of migration on extinction rate. There were model systems of two types: one with long and one with short inter‐patch distances to test the effect of patch isolation on colonisation and extinction rates. Each of the four most common collembolan species at the field site were introduced to two open patches per system (source patches), with the other two functioning as colonisation patches for the species. The experiment was run in an ecotrone over three identical, simulated arctic summers separated by winters of 3 weeks. Six replicates of systems with short and long inter‐patch distances were sampled at the end of each summer. The species varied markedly in their performance in both open arenas and closed patches, indicating differential responses to patch humidity, consistent with their differential distribution along the moisture gradient in the field site. The extinction – colonisation dynamics differed markedly between species as predicted from our field studies. This could partly be ascribed to differential dispersal and colonisation ability, but also to different tolerance to spatially variable patch quality and/or tendency for aggregative behaviour. Three of the species exhibited dynamics that superficially resemble what could be expected from classical metapopulation dynamics. However, there was a striking discrepancy between what would be expected from the effect of migration on the extinction rate of isolated patches (in particular closed patches) and the observed rates. Thus, metapopulation processes, such as stochastic colonisation and extinction events due to demographic stochasticity, were relatively unimportant compared to other sources of spatial variability among which subtle differences in patch quality are probably most important. We discuss the value of combining field studies with model system experiments, in particular when habitat quality cannot easily be measured in the field. However, our field and laboratory studies also emphasise the need for a thorough knowledge of species‐specific life history traits for making biologically sound interpretations based on both observational and experimental data.  相似文献   

19.
Landscape structure is known to critically affect biodiversity. However, although the multi-facetted character of biodiversity is widely recognized, few studies have linked landscape spatial pattern and history simultaneously to multiple facets (taxonomic, functional, and phylogenetic) and spatial components (α, β, and γ) of plant diversity. We set out to reveal whether landscape parameters have specific effects on the separate diversity facets and components of plant diversity at a patch scale on coastal dune landscapes of Central Italy. For each landscape patch, we computed a set of patch-based metrics relying on multi-temporal land-cover maps. Based on a database of plant community plots, on functional traits from field measurements and on a dated phylogenetic tree, we calculated taxonomic (TD), functional (FD), and phylogenetic diversity (PD) within each patch at α, β, and γ level. Diversity measures were then related to the landscape metrics via linear mixed-effect models. Landscape pattern and transformations affected TD only moderately in coastal dune ecosystems. We found much stronger and contrasted effects on FD and PD. FD increased in patches surrounded by human-dominated habitats; PD was higher in fragmented patches, particularly in the Mediterranean macchia. Moreover, landscape pattern affected differently the single communities, the turnover among communities and the pool of species within the patch (α, β, and γ components). Our results call for the combined inclusion of FD and PD and their partitions into ecological analyses, being TD too crude to capture the comprehensive and contrasted response of plant diversity to landscape spatial pattern.  相似文献   

20.
In fragmented landscapes, changes in habitat availability, patch size, shape and isolation may affect survival of local populations. Proposing efficient conservation strategies for such species relies initially on distinguishing the particular effects of those factors. To address these issues, we investigated the occurrence of 3 bird species in fragmented Brazilian Atlantic Forest landscapes. Playback techniques were used to collect presence/absence data of these species inside 80 forest patches, and incidence models were used to infer their occupancy pattern from landscape spatial structure. The relative importance of patch size, shape and surrounding forest cover and isolation was assessed using a model selection approach based on maximum likelihood estimation. The presence of all species was in general positively affected by the amount of surrounding habitat and negatively affected by inter‐patch distances. The joint effects of patch size and the surrounding landscape characteristics were important determinants of occupancy for two species. The third species was affected only by forest cover and mean patch isolation. Our results suggest that local species presence is in general more influenced by the isolation from surrounding forests than by patch size alone. We found evidence that, in highly fragmented landscapes, birds that can not find patches large enough to settle may be able to overcome short distances through the matrix and include several nearby patches within their home‐ranges to complement their resource needs. In these cases, patches must be defined as functionally connected habitat networks rather than mere continuous forest segments. Bird conservation strategies in the Atlantic forest should focus on increasing patch density and connectivity, in order to implement forest networks that reduce the functional isolation between large remnants with remaining core habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号