首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Litchi downy blight, caused by the phytopathogenic oomycete Peronophythora litchii, results in tremendous economic loss in litchi production every year. To successfully colonize the host cell, Phytophthora species secret hundreds of RXLR effectors that interfere with plant immunity and facilitate the infection process. Previous work has already predicted 245 candidate RXLR effector-encoding genes in P. litchii, 212 of which have been cloned and tested for plant cell death-inducing activity in this study. We found three such RXLR effectors could trigger plant cell death through transient expression in Nicotiana benthamiana. Further experiments demonstrated that PlAvh142 could induce cell death and immune responses in several plants. We also found that PlAvh142 localized in both the cytoplasm and nucleus of plant cells. The cytoplasmic localization was critical for its cell death-inducing activity. Moreover, deletion either of the two internal repeats in PlAvh142 abolished the cell death-inducing activity. Virus-induced gene silencing assays showed that cell death triggered by PlAvh142 was dependent on the plant transduction components RAR1 (require for Mla12 resistance), SGT1 (suppressor of the G2 allele of skp1) and HSP90 (heat shock protein 90). Finally, knockout of PlAvh142 resulted in significantly attenuated P. litchii virulence on litchi plants, whereas the PlAvh142-overexpressed mutants were more aggressive. These data indicated that PlAvh142 could be recognized in plant cytoplasm and is an important virulence RXLR effector of P. litchii.  相似文献   

2.
霜疫霉菌侵染对荔枝氧化作用的影响   总被引:2,自引:0,他引:2  
淮枝、桂味和糯米糍 3种荔枝经接种霜疫霉菌后 ,果皮超氧化物歧化酶 (SOD)和过氧化氢酶 (CAT)活性下降 ;而过氧化氢 (H2 O2 )含量升高 ,超氧阴离子自由基 (O2 .)产生速率增加 ,丙二醛 (MDA)积累增多 ,与果实感病指数增加相一致 ,表明霜疫霉菌侵染加速荔枝氧化作用的进程。实验还表明不同荔枝品种对霜疫霉菌抵抗力与其自由基清除能力有关  相似文献   

3.
炭疽病菌侵染对荔枝果实生理生化变化的影响   总被引:3,自引:0,他引:3  
本研究测定了荔枝果实人工接种炭疽病菌后呼吸速率、乙烯释放量的变化和果皮氧化、过氧化作用以及与酚类代谢有关的几种酶活性的变化。结果表明,接种炭疽病菌的荔枝果实呼吸速率和乙烯释放量显著增高,果皮活性氧(O2·)产生速率和丙二醛(MDA)含量显著增加,超氧化物歧化酶(SOD)活性显著降低,过氧化物酶(POD)、多酚氧化酶(PPO)和苯丙氨酸解氨酶(PAL)活性显著增高。说明炭疽病菌的侵染可导致荔枝果实呼吸速率和乙烯释放量的增高,加速荔枝果皮氧化和过氧化进程,并诱导荔枝果皮PPO、POD、PAL活性增高,是加速采收后荔枝果实衰老、褐变、腐烂的一个重要原因。  相似文献   

4.
S. Pandey  A. P. Misra 《Mycopathologia》1971,45(3-4):337-354
The morphology and the mycotrophic habit of a new species ofRhizophagus in mycorrhizal association with the roots ofLitchi chinensis Sonn a tropical fruit tree, has been described. It belongs to the vesicular-arbuscular group of phycomycetous endophytes and has been namedRhizophagus litchii sp. nov.The endophyte could not be brought into culture in artificial media, the presence of living litchi roots was necessary for its growth and development.Root penetration of the endophyte was through the epidermal cells. Roots hairs were free from infection.Part of the thesis submitted byS. Pandey for the award of the degree of Doctor of Philosophy from Bhagalpur University, Bhagalpur, Bihar (India).  相似文献   

5.
Biological antloxldants extracted from plants and fungi have potential abilities to scavenge free radicals and Inhibit lipid peroxldatlon, playing Important roles in preventing diseases, for example, cancer, and aging Induced by reactive oxygen species, which may cause oxidative damage to DNA, proteins and other macromolecules. The antloxldant potency of cultivated fruit-bodies of Cordyceps militarls (L.) Link was investigated In this study. Five established In vitro systems were employed, including the 1,1-dlphenyl-2- plcryldrazyl (DPPH) free radical scavenging, hydroxyl radical eliminating, iron chelating, Inhibition of Ilnolelc acid lipid peroxldatlon and reducing power. The aqueous extract from cultivated fruit-bodies was subjected to the test of amino acid, polysaccharlde and mannitol. Ascorblc acid (Vc), butylated hydroxytoluene (BHT) and ethylenedlamlnetetraacetlc acid (EDTA) were used as positive controls for comparisons. Among the assays, the aqueous extract of C. mllltarls frult-bodles shows a significant scavenging effect on DPPH, eliminating the capability on hydroxyl radicals and the chelating effect on ferrous Iron. The extract also shows positive results of Inhibiting Ilnoleic acid lipid peroxldatlon and reducing power.  相似文献   

6.
The present work evaluates the effect of lipid peroxidation on the ouabain-insensitive Na-ATPase of basolateral plasma membranes from rat kidney proximal tubular cells as an indirect way to study the lipid dependence of this enzyme. An inverse relationship between lipid peroxidation and Na-ATPase activity was found. This effect was due neither to a change in the optimalK m of the system for Na+ nor for the substrate Mg : ATP, nor the optimal pH value of the medium. The optimal temperature value, however, was shifted toward a higher value. There was also an increase of the apparent energy of activation in the region of temperatures above the transition point (20°C) with increase in lipid peroxidation. Peroxidized membranes incubated with phosphatidylcholine from soybean restored their Na-ATPase activity. On the other hand, the Na-ATPase activity was sensitive to oleoly lysophosphatidylcholine. These results suggest that lipid peroxidation might be affecting the Na-ATPase activity through either an increase of peroxidized phospholipids, which might change the membrane fluidity of the lipid microenvironment of the ATPase molecules, or through a direct effect of lysophospholipids released during the lipid peroxidation.  相似文献   

7.
To examine the effect of early‐climacteric (postripening) 1‐methylcyclopropene (1‐MCP) exposure on the shelf‐life and quality of green Cavendish bananas (Musa acuminata cv. Williams) from the middle section of the bunch, bananas were harvested bimonthly and treated with 100 μL L?1 ethylene for 2 consecutive days prior to exposure to 0, 100, 300, 1000, 3000 or 10 000 nL L?1 1‐MCP for 24 h prior to storage at 22°C. 1‐MCP treatment at a concentration of 300 nL L?1 or above increased banana shelf‐life significantly compared with the control, regardless of the month in which fruit were harvested except March where a higher concentration was needed (3000 nL L?1). Fruit harvested in May were the most responsive with a greater than twofold increase in shelf‐life. To examine the effect of fruit position in the bunch on 1‐MCP efficacy, green fruit from the top or bottom of bunches were treated with 100 μL L?1 ethylene for 2 consecutive days prior to early‐climacteric 1‐MCP (300 nL L?1) exposure for 24 h at 22°C. In spring and autumn but not in summer, application of 1‐MCP to early‐climacteric fruit was more effective in fruit from the top than in those treated from the bottom of the bunch, increasing shelf‐life. Firmness of 1‐MCP‐treated fruit was up to 19% greater than that of the control across the year, except in fruit from the bottom of the bunch. Given that 1‐MCP is less effective in extending the shelf‐life of summer‐harvested fruit (particularly those from the bottom of the bunch), we conclude that preharvest conditions and fruit position in the bunch affect their responsiveness to ethylene and their behaviour during the ripening process.  相似文献   

8.
Recently we have demonstrated that extracellular ATP acts as an excitatory neurotransmitter and enhances cell death in the presence of ferrous ions. By using a newly developed cis-parinaric acid fluorescence technique, we demonstrated that ATP, in a dose dependent manner, enhanced the increased membrane lipid peroxidation in PC12 cells when cells were incubated with micromolar FeCl2/DTP. P2 purinoceptor agonists, α,β-methylene ATP and 2-methylthio-ATP, induced PC12 cell lipid peroxidation, but to a lesser extent than ATP. ATP-induced Ca2+ influx via P2 purinoceptor activation significantly increased the intracellular Ca2+ concentration, which may have triggered a free radical generating cascade(s), and led to membrane lipid peroxidation and cell death. Since oxidative stress has been implicated in certain neurodegenerative diseases such as aging, extracellular ATP may contribute to neuronal cell death by an oxidative mechanism involving lipid peroxidation.  相似文献   

9.
The ability of Streptomyces species to act as biocontrol agents for plant pathogens via induced systemic resistance has been demonstrated and considerable efforts have been made in elucidating the underlying mechanisms of Streptomyces–host plant–phytopathogen interactions. Here, we have assessed the ability of Streptomyces coelicolor, Streptomyces griseus, Streptomyces albus, Streptomyces antibioticus and Streptomyces champavatii to provide disease protection against Rhizoctonia solani in Solanum lycopersicon and have also examined associated changes in hydrogen peroxide (H2O2) production, lipid peroxidation (LPO) and antioxidant enzymes. The production of H2O2 at the second day after pathogen inoculation (dapi) was observed to be 1.1‐fold higher in Streptomyces‐treated plants, when compared to untreated inoculated control plants. A similar increase in catalase and ascorbate peroxidase activity was observed at fourth dapi whereas increased activities of guaiacol reductase and glutathione peroxidase were observed at fifth dapi. Likewise, LPO reached a maximum at sixth dapi in untreated inoculated plants while in Streptomyces‐treated plants it was observed to be 1.3–1.5‐fold less when compared to untreated inoculated control plants. This study offers novel insights into the mechanisms of priming by Streptomyces and highlights their capacity to activate plant defence responses generated by biotic stress through induction of antioxidant enzymes along with improved reactive oxygen species management.  相似文献   

10.
To evaluate the metabolic responses in tumour cells exposed to ionizing radiation, oxygen consumption rate (OCR), cellular lipid peroxidation, cellular energy status (intracellular nucleotide pool and ATP production), and mitochondrial reactive oxygen species (ROS), semiquinone (SQ), and iron–sulphur (Fe?S) cluster levels were evaluated in human cervical carcinoma HeLa cells at 12 and 24?h after X-irradiation. LC/MS/MS analysis showed that levels of 8-iso PGF and 5-iPF-VI, lipid peroxidation products of membrane arachidonic acids, were not altered significantly in X-irradiated cells, although mitochondrial ROS levels and OCR significantly increased in the cells at 24?h after irradiation. LC/UV analysis revealed that intracellular AMP, ADP, and ATP levels increased significantly after X-irradiation, but adenylate energy charge (adenylate energy charge (AEC)?=?[ATP?+?0.5?×?ADP]/[ATP?+?ADP?+?AMP]) remained unchanged after X-irradiation. In low-temperature electron spin resonance (ESR) spectra of HeLa cells, the presence of mitochondrial SQ at g?=?2.004 and Fe–S cluster at g?=?1.941 was observed and X-irradiation enhanced the signal intensity of SQ but not of the Fe–S cluster. Furthermore, this radiation-induced increase in SQ signal intensity disappeared on treatment with rotenone, which inhibits electron transfer from Fe–S cluster to SQ in complex I. From these results, it was suggested that an increase in OCR and imbalance in SQ and Fe–S cluster levels, which play a critical role in the mitochondrial electron transport chain (ETC), occur after X-irradiation, resulting in an increase in ATP production and ROS leakage from the activated mitochondrial ETC.  相似文献   

11.
The effect of potassium phosphite (KPhi) on the photosynthetic parameters of cucumber plants inoculated with Pseudoperonospora cubensis was investigated in the present study. Cucumber plants were treated with KPhi before or after inoculation with P. cubensis and leaf samples were collected at different time courses for assessments. Results showed that in pathogen-inoculated plants Fv/Fm was decreased up to 3%. The rate of quantum photosynthetic was also decreased significantly in inoculated plants. Downy mildew led to a decrease in chlorophyll amount which in turn reduced the efficiency of photosystem II. In the KPhi-treated leaves, chlorophyll a and b decreased by 72% and 68%, respectively. Remarkable reduction in the efficiency of photosystem II as well as increased lipid membrane disruption, led to increased lipid peroxidation rate of the membranes up to 52%. The results of this study indicate the mitigating role of potassium phosphite in reducing the adverse effects of pathogen and maintaining the photosynthetic apparatus efficiency in cucumber plants.  相似文献   

12.
This article reviews the relationship between the energy status of plant cells under O2 stress (e.g. waterlogging) and the maintenance of membrane intactness, using information largely derived from suspension cultures of anoxia‐intolerant potato cells. Energy‐related parameters measured were fermentation end‐products (ethanol, lactate, alanine), respiratory rate, ATP, adenylate energy charge, nitrate reductase activity and biomass. ATP synthesis rates were calculated from the first four parameters. Reactive oxygen species were estimated from H2O2 and superoxide levels, and the enzymatic detoxification potential from the activity levels of catalase and superoxide dismutase. Structure‐related parameters were total fatty acids, free fatty acids (FFAs), lipid hydroperoxides, total phospholipids, N‐acylphosphatidylethanolamine (NAPE) and cell viability. The following issues are addressed in this review: (1) what is the impact of anoxia on membrane lipids and how does this relate to energy status; (2) does O2 per se play a role in these changes; (3) under which conditions and to what extent does lipid peroxidation occur upon re‐aeration; and (4) can the effects of re‐aeration be distinguished from those of anoxia? The emerging picture is a reappraisal of the relative contributions of anoxia and re‐aeration. Two successive phases (pre‐lytic and lytic) characterize potato cells under anoxia. They are connected by a threshold in ATP production rate, below which membrane lipids are hydrolysed to FFAs, and NAPE increases. Since lipid peroxidation occurs only when cells are reoxygenated during the lytic phase, its biological relevance in an already damaged system is questionable.Key words: Acorus calamus L., energy shortage, free fatty acids, lipid peroxidation, lipolytic acyl hydrolase, lipoxygenase, membrane intactness, N‐acylphosphatidylethanolamine, O2 stress, reactive oxygen species, Solanum tuberosum L.  相似文献   

13.
F‐ATP synthases convert the electrochemical energy of the H+ gradient into the chemical energy of ATP with remarkable efficiency. Mitochondrial F‐ATP synthases can also undergo a Ca2+‐dependent transformation to form channels with properties matching those of the permeability transition pore (PTP), a key player in cell death. The Ca2+ binding site and the mechanism(s) through which Ca2+ can transform the energy‐conserving enzyme into a dissipative structure promoting cell death remain unknown. Through in vitro, in vivo and in silico studies we (i) pinpoint the “Ca2+‐trigger site” of the PTP to the catalytic site of the F‐ATP synthase β subunit and (ii) define a conformational change that propagates from the catalytic site through OSCP and the lateral stalk to the inner membrane. T163S mutants of the β subunit, which show a selective decrease in Ca2+‐ATP hydrolysis, confer resistance to Ca2+‐induced, PTP‐dependent death in cells and developing zebrafish embryos. These findings are a major advance in the molecular definition of the transition of F‐ATP synthase to a channel and of its role in cell death.  相似文献   

14.
Zucchini fruit is susceptible to develop chilling injuries (CI) when stored at low temperature. In this study, the effects of a preconditioning treatment during cold storage and its relation with the physiological response to chilling tolerance have been investigated. The commercial variety Sinatra, whose fruit are very sensitive to cold storage, has been used. After harvest, fruit were kept at 4°C or preconditioned during 48 h at 15°C before cold storage. Weight loss, electrolyte leakage and lipid peroxidation were lower in preconditioned at the end of storage time, and CI index was significantly reduced in preconditioned compared to control fruit. The preconditioning treatment improved the energy status of the fruit increasing the pool of ATP, and maintaining the energy charge. The preconditioned fruit improved their antioxidant status with lower H2O2 content and induction of ascorbate peroxidase (APX) and catalase (CAT) activities. A reduction in putrescine was detected in preconditioned fruit along with a lower expression of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) and a rise in activity of diamine oxidase (DAO). The concentrations of glutamate and γ‐aminobutyrate (GABA) were lower during preconditioning, while that of proline was higher. In summary, preconditioning treatment induces chilling tolerance in zucchini fruit triggering a defence‐response against oxidative stress and increasing ATP pool and proline content.  相似文献   

15.
Fruit crops are subject to precocious fruit abscission, during which the phytohormone ethylene (ET) acts as a major positive regulator. However, the molecular basis of ET‐induced fruit abscission remains poorly understood. Here, we show that two ETHYLENE INSENSITIVE 3‐like (EIL) homologs in litchi, LcEIL2 and LcEIL3, play a role in ET‐activated fruitlet abscission. LcEIL2/3 were significantly upregulated in the fruit abscission zone (AZ) during the ET‐induced fruitlet abscission in litchi. The presence of LcEIL2/3 in wild‐type Arabidopsis and ein3 eil1 mutants can accelerate the floral organ abscission. Moreover, the electrophoretic mobility shift assay and dual luciferase reporter analysis illustrated that LcEIL2/3 directly interacted with the gene promoters to activate the expression of cell wall remodeling genes LcCEL2/8 and LcPG1/2, and ET biosynthetic genes LcACS1/4/7 and LcACO2/3. Furthermore, we showed that LcPG1/2 were expressed in the floral abscission zone of Arabidopsis, and constitutive expression of LcPG2 in Arabidopsis promoted the floral organ abscission. In conclusion, we propose that LcEIL2/3 are involved in ET‐induced fruitlet abscission via controlling expression of genes related to ET biosynthesis and cell wall remodeling in litchi.  相似文献   

16.
Mango fruits (Mangifera indica L.) were treated by vacuum infiltration of 1.0 mm benzo‐(1,2,3)‐thiadiazole‐7‐carbothioic acid s ‐methyl ester (BTH) after harvest. Seventy‐two hours after the treatment with BTH, the fruit were inoculated with 15 μl of conidial suspension of Colletotrichum gloeosporioides (1 × 105 conidia/ml) and incubated at 13°C, 85–90% RH for disease development. Disease incidence and lesion diameter in mango fruit after the inoculation were significantly (P < 0.05) reduced by the BTH treatment during the incubation. Peroxidase, polyphenoloxidase, phenylalanine ammonia‐lyase, chitinase and β‐1,3‐glucanase activities and total phenolic compounds content in the fruits were all enhanced by the BTH treatment during the incubation. The catalase activity in the fruit was inhibited, whereas the level of hydrogen peroxide was increased by the BTH treatment during the infection. These responses may be involved in the induced resistance against the pathogen infection in mango fruit by BTH treatment. Application of BTH in fruit possesses promising results in the control of postharvest diseases as an alternative to traditional methods.  相似文献   

17.
Lipid peroxidation in isolated rat liver mitochondria, mitoplast, and mitochondrial inner membrane fragments was induced either by ferrous ions, or in an NADPH-dependent process by complexing with adenine nucleotides (ADP or ATP) iron. The Fe2+-induced lipid peroxidation is nonenzymic when inner membrane fragments are used, while the differences in the inhibitory effect of Mn2+ ions and the stimulatory effect of the ionophore A-23187 in mitochondria and inner membrane fragments suggest an enzymic mechanism for ferrous ion-induced lipid peroxidation in intact mitochondria. Contrary to this the ADP/Fe/NADPH-dependent lipid peroxidation is an enzymic process both in mitochondria and inner membrane preparations. We have shown that cytochrome P450 is involved in the ADP/Fe/NADPH-induced lipid peroxidation. Succinate, a known inhibitor of NADPH-dependent lipid peroxidation, inhibited the Fe2+-induced process also, and there was no difference in this effect when inner membrane preparations, mitochondria, or mitoplasts were used.  相似文献   

18.
Chilling (4 °C) induced a prolonged high level of intracellular Ca2+ (Ca2+ overload) and lipid peroxidation in maize (Zea mays L. cv Black Mexican Sweet) cultured cells. However, such Ca2+ overload and enhanced lipid peroxidation were not seen in abscisic acid (ABA)‐treated cells, which had an improved chilling tolerance. A Ca2+ ionophore, A23187, caused Ca2+ overload in both ABA‐treated maize cells and the untreated control, whereas an enhanced lipid peroxidation was detected only in the control. The high level of active oxygen species (AOS) in the control during chilling at 4 °C could be reduced by the presence of lanthanum (La3+), a Ca2+ channel blocker, in the medium. Moreover, both the A23187‐induced lipid peroxidation and AOS production in the control could be reduced by extracellular EGTA, a Ca2+ chelator. Laser‐scanning confocal microscopy revealed that mitochondria were one of the major AOS sources under chilling and during A23187 treatment. In vitro assays showed that superoxide production in isolated maize mitochondria was enhanced by the presence of Ca2+. Findings suggest that chilling‐induced Ca2+ influx in the control triggers a marked generation of AOS, which in turn results in the enhanced lipid peroxidation. The ability of ABA‐treated cells to avoid the chilling‐induced Ca2+ influx may serve as a mechanism that prevents the chilling‐induced oxidative stress and thus results in less chilling injury.  相似文献   

19.
Nicotinamide N‐methyltransferase (NNMT) plays a central role in cellular metabolism, regulating pathways including epigenetic regulation, cell signalling, and energy production. Our previous studies have shown that the expression of NNMT in the human neuroblastoma cell line SH‐SY5Y increased complex I activity and subsequent ATP synthesis. This increase in ATP synthesis was lower than the increase in complex I activity, suggesting uncoupling of the mitochondrial respiratory chain. We, therefore, hypothesised that pathways that reduce oxidative stress are also increased in NNMT‐expressing SH‐Y5Y cells. The expression of uncoupling protein‐2 messenger RNA and protein were significantly increased in NNMT‐expressing cells (57% ± 5.2% and 20.1% ± 1.5%, respectively; P = .001 for both). Total GSH (22 ± 0.3 vs 35.6 ± 1.1 nmol/mg protein), free GSH (21.9 ± 0.2 vs 33.5 ± 1 nmol/mg protein), and GSSG (0.6 ± 0.02 vs 1 ± 0.05 nmol/mg protein; P = .001 for all) concentrations were significantly increased in NNMT‐expressing cells, whereas the GSH:GSSG ratio was decreased (39.4 ± 1.8 vs 32.3 ± 2.5; P = .02). Finally, reactive oxygen species (ROS) content was decreased in NNMT‐expressing cells (0.3 ± 0.08 vs 0.12 ± 0.03; P = .039), as was the concentration of 8‐isoprostane F2α (200 ± 11.5 vs 45 ± 2.6 pg/mg protein; P = .0012). Taken together, these results suggest that NNMT expression reduced ROS generation and subsequent lipid peroxidation by uncoupling the mitochondrial membrane potential and increasing GSH buffering capacity, most likely to compensate for increased complex I activity and ATP production.  相似文献   

20.
Damage to DNA and disruption of membrane integrity by lipid peroxidation processes are two of the proposed causes of UV‐B‐induced growth inhibition in plants. However, the relative significance of these different types of molecular damage has not been established in experiments carried out under realistic physiological conditions. Plants of Gunnera magellanica (a native herb from southern Patagonia) were exposed to a gradient of biologically effective UV‐B doses (from 0 to 6.5 kJ m?2 d?1 of UV‐Bbe) in a greenhouse study. Leaf expansion was measured and sensitive techniques were used to detect damage to DNA (in the form of cyclobutane pyrimidine dimers; CPDs) and lipid peroxidation (via electronic‐paramagnetic resonance; EPR). Leaf expansion decreased and the CPD density increased with increasing UV‐B doses, but the degree of lipid peroxidation remained unaffected. The highest UV‐B dose induced a transient oxidative stress situation (as evaluated using the ratio of ascorbyl radical to ascorbate, A·/AH), which was rapidly controlled by an increase in the ascorbate pool. The present results suggest that under a range of UV‐Bbe doses that overlaps the range of doses that G. magellanica plants experience in their natural environment, growth inhibition is better explained by DNA damage than by increased lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号