首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology of folate binding.

Methods

Self-association behavior of apo- and holo-FBP was addressed through size exclusion chromatography, SDS-PAGE, mass spectrometry, surface plasmon resonance and fluorescence spectroscopy.

Results

Especially holo-FBP exhibits concentration-dependent self-association at pH 7.4 (pI), and is more prone to associate into stable complexes than apo-FBP. Even more pronounced was the tendency to complexation between apo-FBP and holo-FBP in accord with a model predicting association between apo and holo monomers [19]. This will lead to removal of apo monomers from the reaction scheme resulting in a weak incomplete ligand binding similar to that observed at FBP concentrations < 10 nM. The presence of synthetic and natural detergents normalized folate binding kinetics and resulted in appearance of monomeric holo-FBP. Fluorescence spectroscopy indicated molecular interactions between detergent and tryptophan residues located in hydrophobic structures of apo-FBP which may participate in protein associations.

General significance

Self-association into multimers may protect binding sites, and in case of holo-FBP even folate from biological degradation. High-affinity folate binding in body secretions, typically containing 1–10 nM FBP, requires the presence of natural detergents, i.e. cholesterol and phospholipids, to avoid complexation between apo- and holo-FBP.  相似文献   

2.
Xylan–lignin (XL), glucomannan–lignin (GML) and glucan–lignin (GL) complexes were isolated from spruce wood, hydrolyzed with xylanase or endoglucanase/β-glucosidase, and analyzed by analytical pyrolysis and 2D-NMR. The enzymatic hydrolysis removed most of the polysaccharide moieties in the complexes, and the lignin content and relative abundance of lignin–carbohydrate linkages increased. Analytical pyrolysis confirmed the action of the enzymatic hydrolysis, with strong decreases of levoglucosane and other carbohydrate-derived products. Unexpectedly it also revealed that the hydrolase treatment alters the pattern of lignin breakdown products, resulting in higher amounts of coniferyl alcohol. From the anomeric carbohydrate signals in the 2D-NMR spectra, phenyl glycoside linkages (undetectable in the original complexes) could be identified in the hydrolyzed GML complex. Lower amounts of glucuronosyl and benzyl ether linkages were also observed after the hydrolysis. From the 2D-NMR spectra of the hydrolyzed complexes, it was concluded that the lignin in GML is less condensed than in XL due to its higher content in β-O-4′ ether substructures (62 % of side chains in GML vs 53 % in XL) accompanied by more coniferyl alcohol end units (16 vs 13 %). In contrast, the XL lignin has more pinoresinols (11 vs 6 %) and dibenzodioxocins (9 vs 2 %) than the GML (and both have ~13 % phenylcoumarans and 1 % spirodienones). Direct 2D-NMR analysis of the hydrolyzed GL complex was not possible due to its low solubility. However, after sample acetylation, an even less condensed lignin than in the GML complex was found (with up to 72 % β-O-4′ substructures and only 1 % pinoresinols). The study provides evidence for the existence of structurally different lignins associated to hemicelluloses (xylan and glucomannan) and cellulose in spruce wood and, at the same time, offers information on some of the chemical linkages between the above polymers.  相似文献   

3.
To understand the molecular mechanisms of amphiphilic membrane-active peptides, one needs to study their interactions with lipid bilayers under ambient conditions. However, it is difficult to control the pH of the sample in biophysical experiments that make use of mechanically aligned multilamellar membrane stacks on solid supports. HPLC-purified peptides tend to be acidic and can change the pH in the sample significantly. Here, we have systematically studied the influence of pH on the lipid interactions of the antimicrobial peptide PGLa embedded in oriented DMPC/DMPG bilayers. Using solid-state NMR (31P, 2H, 19F), both the lipid and peptide components were characterized independently, though in the same oriented samples under typical conditions of maximum hydration. The observed changes in lipid polymorphism were supported by DSC on multilamellar liposome suspensions. On this basis, we can present an optimized sample preparation protocol and discuss the challenges of performing solid-state NMR experiments under controlled pH. DMPC/DMPG bilayers show a significant up-field shift and broadening of the main lipid phase transition temperature when lowering the pH from 10.0 to 2.6. Both, strongly acidic and basic pH, cause a significant degree of lipid hydrolysis, which is exacerbated by the presence of PGLa. The characteristic re-alignment of PGLa from a surface-bound to a tilted state is not affected between pH of 7 to 4 in fluid bilayers. On the other hand, in gel-phase bilayers the peptide remains isotropically mobile under acidic conditions, displays various co-existing orientational states at pH 7, and adopts an unknown structural state at basic pH.  相似文献   

4.
The binding of aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase in fetal calf brain homogenates and extracts has been investigated at both 0° and 37°C under high ionic strength conditions. The results demonstrate far greater enzyme binding at 37°C than at 0°C, which correlates with an increased sedimentation of cytoskeletal actin at the higher temperature. A dependence of enzyme sedimentation on the presence of polymerised actin was also demonstrated, and this indicates that cytoskeletal actin is a major adsorbent of glycolytic enzymes in this non-muscle tissue.  相似文献   

5.
Endo-1,3-β-glucanase from Cellulosimicrobium cellulans DK-1 has a carbohydrate-binding module (CBM-DK) at the C-terminal side of a catalytic domain. Out of the imperfect tandem α-, β-, and γ-repeats in CBM-DK, the α-repeat primarily contributes to β-glucan binding. This unique feature is derived from Trp273 in α-repeat, whose corresponding residues in β- and γ-repeats are Asp314 and Gly358, respectively. In this study, we generated Trp-switched mutants, W273A/D314W, D270A/W273A/D314W, W273A/G358W, and D270A/W273A/G358W, and analyzed their binding abilities toward laminarioligosaccharides and laminarin. While the binding affinities of D270A/W273A and W273A mutants were either lost or much lower than that of the wild-type, those of Trp-switched mutants recovered, indicating that a Trp introduction in β- or γ-repeat can substitute the α-repeat by primarily contributing to β-glucan binding. Thus, we have successfully engineered a CBM-DK that binds to laminarin by a mechanism different from that of the wild-type, but with similar affinity.  相似文献   

6.
MicroRNA (miRNA) has been shown to be essential for regulating cell fate and pluripotency; however, our knowledge of miRNA function in stem cells is incomplete due to experimental limitations and difficulties in identifying their physiological targets. Recent studies implicated hESC-expressed miRNAs (miR?302–367 and miR?371–373 clusters) in regulating BMP signaling and promoting pluripotency, suggesting that low levels of BMP signaling may promote pluripotency by preventing neural induction. A comprehensive list of miR?302–367 targets recently identified by genome-wide approaches suggests a number of additional cellular processes and signaling pathways whose regulation by miR?302–367 may promote pluripotency and reprogramming, such as cell cycle, epigenetic changes, metabolism and vesicular transfer.  相似文献   

7.
Copper interaction with alpha synuclein (αS) has been shown to accelerate aggregation and oligomerization of the protein. Three different αS copper binding domains have been proposed: (i) the N-terminal residues (1-9) that represent the minimal copper binding domain; (ii) the His-50 imidazole and (iii) the Asp and Glu residues within the acidic C-terminal domain. The copper coordination at the N-terminus has been extensively characterized and it is generally accepted that it provides the highest affinity site. The same does not hold for the role played by His-50 in copper binding. In this work Cu(ii) coordination to peptide fragments encompassing residues 45-55 of αS has been exhaustively characterized, including systems containing the inherited mutations E46K and A53T, as model peptides of the His-50 site. Through potentiometric titrations all the speciation profiles have been determined and the stability constants have been used to estimate the dissociation constants of complexes corresponding to the binding modes at pH 6.5 and 7.5. Spectroscopic analyses allowed determination of (i) the copper coordination sphere, (ii) its geometry and (iii) the constraints wherefrom the 3D structural models of the copper complexes could be obtained.  相似文献   

8.
9.
Stratifin is a member of 14-3-3 protein family, a highly conserved group of proteins constituted by seven isoforms. They are involved in numerous crucial intracellular functions such as cell cycle and apoptosis, regulation of signal transduction pathways, cellular trafficking, cell proliferation and differentiation, cell survival, and protein folding and processing, among others. At epidermal level, stratifin (also called 14-3-3 sigma) has been described as molecule with relevant functions. For instance, this isoform is a marker associated with keratinocyte differentiation. In this maturation process, the presence of dominant negative molecules of p53 induces a “stemness condition” of keratinocyte precursor cells and suppression of stratifin expression. In addition, the recently described keratinocyte-releasable form of stratifin is involved in dermal fibroblast MMP-1 over-expression through c-Fos and c-Jun activity. This effect is mediated, at least in part, by p38 mitogen-activated protein kinase (MAPK). Other MMP family members such as stromelysin-1 (MMP-3), stromelysin-2 (MMP-10), neutrophil collagenase (MMP-8), and membrane-type MMP-24 (MT5-MMP) are also up-regulated by stratifin. Within fibroproliferative disorder of skin, hypertrophic scar and keloids exhibit a high content of collagen, proteoglycans, and fibronectin. Thus, the MMP profile induced by stratifin is an interesting starting point to establish new therapeutic tools to control the process of wound healing. In this review, we will focus on site of synthesis and mode of action of stratifin in skin and wound healing.  相似文献   

10.
11.
Apart from differences in circadian phase position, individuals with different morningness–eveningness levels vary in many more characteristics. Particularly consistent relationships have been observed between morningness–eveningness and mood. Eveningness has been associated with disadvantageous mood, e.g. depressiveness in healthy individuals, and mood disorders. A concept of social jetlag suggests that evening subjects function in less advantageous environments due to discrepancies between internal and social time (societies promote morning-oriented functioning), which results in their lowered mood. Individual temperament, as defined by the Regulative Theory of Temperament (RTT), refers to the capacity of the human organism to meet environmental requirements – the greater the capacity, the less negative impact of external conditions. Thus, the aim of this study is to determine which RTT traits are linked to both morningness–eveningness and mood dimensions and to test whether they account for the relationship between morningness–eveningness and mood. A sample of 386 university students (267 female) aged between 19 and 47 (M?=?21.15, SD?=?4.23) years completed the University of Wales Institute of Science and Technology (UWIST) Mood Adjective Check List, Morningness–Eveningness Questionnaire and Formal Characteristics of Behaviour – Temperament Inventory. Analyses revealed lower endurance (EN) and higher emotional reactivity (ER) related to eveningness as well as to lower hedonic tone (HT), energetic arousal (EA) and to higher tense arousal (TA). Moreover, eveningness was associated with lower HT, EA and higher TA. Among RTT traits, EN was most strongly related to eveningness, and mediation analyses revealed that this temperamental trait fully mediated the relationship between eveningness and the three mood dimensions. The remaining RTT traits did not provide more explanation of the association between morningness–eveningness and mood than EN itself. If subjects did not differ in EN, the association between morningness–eveningness and mood was absent. EN is discussed as a protective factor against negative consequences of social jetlag and particularly lowered mood in evening individuals.  相似文献   

12.
A competitive Brownian model for the interaction of ferredoxin, ferredoxin NADP+ reductase and hydrogenase has been built. In the model, molecules of three types of proteins are placed into a cubic reaction volume, where they move under Brownian and electrostatic forces created by neighboring molecules and the solution. It has been shown that the rate of ferredoxin binding with ferredoxin NADP+ reductase does not change at the pH range from 5.0 to 9.0. Thus, it may be suggested that regulation of ferredoxin NADP+ reductase activity is mediated by other processes. On the other hand, the rate of ferredoxin binding with hydrogenase in the model depends greatly on pH: if the pH value increases from 6.0 to 8.0 the rate increases by factor of three. The increase of the pH value in the stroma under illumination results in an increase of the rate of its interaction with ferredoxin, but decreases the level of protons that are the substrate for the reaction catalyzed by the protein. Thus, the rate of hydrogen production in the chloroplast stroma is low at low pH due to the reception of a small number of electrons by hydrogenase. When the pH increases, the number of electrons that are received by the enzyme from ferredoxin also increases; thus, the rate of hydrogen production increases as well.  相似文献   

13.
Conradi–Hünermann–Happle syndrome (CDPX2, OMIM 302960) is an inherited X-linked dominant variant of chondrodysplasia punctata (CP) caused by mutations in one gene of the distal pathway of cholesterol biosynthesis. It exhibits intense phenotypic variation and primarily affects the skin, bones and eyes. The ichthyosis following Blaschko's lines, chondrodysplasia punctata and cataracts are the typical clinical findings. The cardinal biochemical features are an increase in 8(9)-cholestenol and 8-dehydrocholesterol (8DHC), which suggest a deficiency in 3β-hydroxysteroid-Δ8,Δ7-isomerase, also called emopamil binding protein (EBP). The EBP gene is located on the short arm of the X chromosome (Xp11.22–p11.23) and encodes a 230 amino acid protein with dual function. Explaining the clinical phenotype in CDPX2 implies an understanding of both the genetics and biochemical features of this disease. CDPX2 displays an X-linked dominant pattern of inheritance, which is responsible for the distribution of lesions in some tissues. The clinical phenotype in CDPX2 results directly from impairment in cholesterol biosynthesis, and indirectly from abnormalities in the hedgehog signaling protein pathways. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

14.
《Autophagy》2013,9(2):280-282
Pancreatic β-cells play a key role in glucose homeostasis in mammals. Although large-scale protein synthesis and degradation occur in pancreatic β-cells, the mechanism underlying dynamic protein turnover in β-cells remains largely unknown. We found low-level constitutive autophagy in β-cells of C57BL/6 mice fed a standard diet; however, autophagy was markedly upregulated in mice fed a high-fat diet. β-cells of diabetic db/db mice contained large numbers of autophagosomes, compared with non-diabetic db/misty controls. The functional importance of autophagy was analyzed using β-cell-specific Atg7 knockout mice. Autophagy-deficient mice showed degeneration of β-cells and impaired glucose tolerance with reduced insulin secretion. While a high-fat diet stimulated β-cell autophagy in control mice, it induced a profound deterioration of glucose intolerance in β-cell autophagy-deficient mutants, partly because of the lack of a compensatory increase in β-cell mass. These results suggest that the degradation of unnecessary cellular components by autophagy is essential for maintenance of the architecture and function of β-cells. Autophagy also serves as a crucial element of stress responses to protect β-cells under insulin resistant states. Impairment of autophagic machinery could thus predispose individuals to type 2 diabetes.  相似文献   

15.
The involvement of Cl? in cytoplasm polarization in the pollen tube and membrane potential control during pollen germination in vitro was studied by fluorescence techniques in Nicotiana tabacum. Cl? release from cells was blocked by the anion channel inhibitor nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) or by the addition of Cl? to the incubation medium. The concentrations of the inhibitor (40 μM) and extracellular Cl? completely inhibiting pollen germination (200 mM) and pollen tube growth (100 mM) were used. The release of anions from the pollen grain has been revealed in the first minutes of hydration also in the presence of 200 mM Cl?. The inhibitor blocked this process completely, which points to the significance of the NPPB-sensitive anion channels in the transmembrane Cl? transport at the early activation stage. The pollen tube membrane was hyperpolarized in the presence of 100 mM Cl?; however, exogenous Cl? had no effect on the compartmentalization and organelle movement in the tube. The inhibitor depolarized the plasma membrane in the pollen grain and tube and affected the polar organization of the cytoplasm and organelle movement. Thus, activity of NPPB-sensitive chloride channels was required to regulate the potential on the plasma membrane and to maintain the functional compartmentalization of the cytoplasm, which provides for the polar growth.  相似文献   

16.
The binding of inhibitors to α-chymotrypsin at alkaline pH   总被引:1,自引:1,他引:1       下载免费PDF全文
1. The binding of the competitive inhibitor N-acetyl-d-tryptophan amide to alpha-chymotrypsin has now been studied at pH values up to 10.6, by the technique of equilibrium dialysis. 2. This binding depends on the ionization of a group on the free enzyme with apparent pK(a) 9.3 at 5 degrees . 3. This group is tentatively identified as that responsible for an enzyme conformation change at high pH values, on which the catalytic activity of the enzyme also depends.  相似文献   

17.
The biological activities of the laminin α2 chain LG4–5 module result from interactions with cell surface receptors, such as heparan sulfate proteoglycans and α-dystroglycan. In this study, heparin and α-dystroglycan binding sequences were identified using 42 overlapping synthetic peptides from the LG4–5 module and using recombinant LG4–5 protein (rec-α2LG4–5). Physiological activities of the active peptides were also examined in explants of submandibular glands. Heparin binding screens showed that the A2G78 peptide (GLLFYMARINHA) bound to heparin and prevented its binding to rec-α2LG4–5. Furthermore, alanine substitution of the arginine residue in the A2G78 site on rec-α2LG4–5 decreased heparin binding activity. When α-dystroglycan binding of the peptides was screened, two peptides, A2G78 and A2G80 (VQLRNGFPYFSY), bound α-dystroglycan. A2G78 and A2G80 also inhibited α-dystroglycan binding of rec-α2LG4–5. A2G78 and A2G80 specifically inhibited end bud formation of submandibular glands in culture. These results suggest that the A2G78 and A2G80 sites play functional roles as heparan sulfate- and α-dystroglycan-binding sites in the module. These peptides are useful for elucidating molecular mechanisms of heparan sulfate- and/or α-dystroglycan-mediated biological functions of the laminin α2 chain.  相似文献   

18.
Coronary artery disease (CAD) is a well-known pathological condition that is characterized by high morbidity and mortality. The main pathological manifestation of CAD is myocardial injury due to ischemia–reperfusion (I–R). Currently, no efficacious treatment of protecting the heart against myocardial I–R exists. Hence, it is necessary to discover or develop novel strategies to prevent myocardial-reperfusion injury to improve clinical outcomes in patients with CAD. A large body of experimental evidence supports cardioprotective properties of curcumin and the ability of this phytochemical to modify some cardiovascular risk factors. However, the detailed effects of curcumin in myocardial I–R injury are still unclear and there is a lack of evidence concerning which curcumin regimen may be ideal for myocardial I–R injury. This paper presents a brief review of the pathophysiology of myocardial I–R injury and the mechanisms of action of curcumin in reducing myocardial I–R injury.  相似文献   

19.
20.
Charged amino acids are known to be important in controlling the actions of integral and peripheral membrane proteins and cell disrupting peptides. Atomistic molecular dynamics studies have shed much light on the mechanisms of membrane binding and translocation of charged protein groups, yet the impact of the full diversity of membrane physico-chemical properties and topologies has yet to be explored. Here we have performed a systematic study of an arginine (Arg) side chain analog moving across saturated phosphatidylcholine (PC) bilayers of variable hydrocarbon tail length from 10 to 18 carbons. For all bilayers we observe similar ion-induced defects, where Arg draws water molecules and lipid head groups into the bilayers to avoid large dehydration energy costs. The free energy profiles all exhibit sharp climbs with increasing penetration into the hydrocarbon core, with predictable shifts between bilayers of different thickness, leading to barrier reduction from 26 kcal/mol for 18 carbons to 6 kcal/mol for 10 carbons. For lipids of 10 and 12 carbons we observe narrow transmembrane pores and corresponding plateaus in the free energy profiles. Allowing for movements of the protein and side chain snorkeling, we argue that the energetic cost for burying Arg inside a thin bilayer will be small, consistent with recent experiments, also leading to a dramatic reduction in pKa shifts for Arg. We provide evidence that Arg translocation occurs via an ion-induced defect mechanism, except in thick bilayers (of at least 18 carbons) where solubility-diffusion becomes energetically favored. Our findings shed light on the mechanisms of ion movement through membranes of varying composition, with implications for a range of charged protein–lipid interactions and the actions of cell-perturbing peptides. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号