首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of the heme-thiolate enzyme chloroperoxidase (CPO) from Caldariomyces fumago with peroxynitrite (PN) gave the Compound II intermediate, which was photo-oxidized with 365 nm light to give a reactive oxidizing species. Cryo-solvents at pH ≈ 6 were employed, and reactions were conducted at temperatures as low as − 50 °C. The activity of CPO as evaluated by the chlorodimedone assay was unaltered by treatment with PN or by production of the oxidizing transient and subsequent reaction with styrene. EPR spectra at 77 K gave the amount of ferric protein at each stage in the reaction sequence. The PN oxidation step gave a 6:1 mixture of Compound II and ferric CPO, the photolysis step gave an approximate 1:1 mixture of active oxidant and ferric CPO, and the final mixture after reaction with excess styrene contained ferric CPO in 80% yield. In single turnover reactions at − 50 °C, styrene was oxidized to styrene oxide in high yield. Kinetic studies of styrene oxidation at − 50 °C displayed saturation kinetics with an equilibrium constant for formation of the complex of Kbind = 3.8 × 104 M− 1 and an oxidation rate constant of kox = 0.30 s− 1. UV-Visible spectra of mixtures formed in the photo-oxidation sequence at ca. − 50 °C did not contain the signature Q-band absorbance at 690 nm ascribed to CPO Compound I prepared by chemical oxidation of the enzyme, indicating that different species were formed in the chemical oxidation and the photo-oxidation sequence.  相似文献   

2.
Tan Y  Sun L  Xi Z  Yang GF  Jiang DQ  Yan XP  Yang X  Li HY 《Analytical biochemistry》2008,383(2):200-204
Protoporphyrinogen oxidase (PPO) is a flavin adenine dinucleotide (FAD)-containing enzyme in the tetrapyrrole biosynthetic pathway that leads to the formation of both heme and chlorophylls, which has been identified as one of the most important action targets of commercial herbicides. The literature reports gave different PPO-catalytic kinetic parameters for the substrate protoporphyrinogen IX (Km of 0.1 to 10.4 μM) with different sources of PPO using fluorescent or HPLC methods. Herein we assayed the enzymatic activity of recombinant Bacillus subtilis PPO by using capillary electrophoresis (CE), a method with high separation efficiency, easy automation, and low sample consumption. The Michaelis constant and maximum reaction velocity were determined as 7.0 ± 0.6 μM and 0.38 ± 0.02 μmol min-1 μg−1, respectively. The interaction between PPO and acifluorfen, a commercial PPO-inhibiting herbicide, was measured as the inhibition constant 186.9 ± 9.3 μМ. The relationship between cofactor FAD and PPO activity can also be quantitatively studied by this CE method. The CE method used here should also be a convenient, reliable method for PPO study.  相似文献   

3.
Alkyl hydroperoxide reductase E (AhpE), a novel subgroup of the peroxiredoxin family, comprises Mycobacterium tuberculosis AhpE (MtAhpE) and AhpE-like proteins present in many bacteria and archaea, for which functional characterization is scarce. We previously reported that MtAhpE reacted ~ 103 times faster with peroxynitrite than with hydrogen peroxide, but the molecular reasons for that remained unknown. Herein, we investigated the oxidizing substrate specificity and the oxidative inactivation of the enzyme. In most cases, both peroxidatic thiol oxidation and sulfenic acid overoxidation followed a trend in which those peroxides with the lower leaving-group pKa reacted faster than others. These data are in agreement with the accepted mechanisms of thiol oxidation and support that overoxidation occurs through sulfenate anion reaction with the protonated peroxide. However, MtAhpE oxidation and overoxidation by fatty acid-derived hydroperoxides (~ 108 and 105 M− 1 s− 1, respectively, at pH 7.4 and 25 °C) were much faster than expected according to the Brønsted relationship with leaving-group pKa. A stoichiometric reduction of the arachidonic acid hydroperoxide 15-HpETE to its corresponding alcohol was confirmed. Interactions of fatty acid hydroperoxides with a hydrophobic groove present on the reduced MtAhpE surface could be the basis of their surprisingly fast reactivity.  相似文献   

4.
The effect of bicarbonate on the rates of the H2O2 oxidation of cysteine, gluthathione, and N-acetylcysteine to the corresponding disulfides was investigated. The relative oxidation rates at pH 8 for the different thiols are inversely related to the pKa values of the thiol groups, and the reactive nucleophiles are identified as the thiolate anions or their kinetic equivalents. The second-order rate constants at 25 °C for the reaction of the thiolate anions with hydrogen peroxide are 17 ± 2 M−1 s−1 for all three substrates. In the presence of bicarbonate (>25 mM), the observed rate of thiolate oxidation is increased by a factor of two or more, and the catalysis is proposed to be associated with the formation of peroxymonocarbonate from the equilibrium reaction of hydrogen peroxide with bicarbonate (via CO2). The calculated second-order rate constants for the direct reaction of the three thiolate anions with peroxymonocarbonate fall within the range of 900-2000 M−1 s−1. Further oxidation of disulfides by peroxymonocarbonate results in the formation of thiosulfonate and sulfonate products. These results strongly suggest that peroxymonocarbonate should be considered as a reactive oxygen species in aerobic metabolism with relevance in thiol oxidations.  相似文献   

5.
Peroxiredoxin 2 (Prx2) is a 2-Cys peroxiredoxin extremely abundant in the erythrocyte. The peroxidase activity was studied in a steady-state approach yielding an apparent KM of 2.4 μM for human thioredoxin and a very low KM for H2O2 (?0.7 μM). Rate constants for the reaction of peroxidatic cysteine with the peroxide substrate, H2O2 or peroxynitrite, were determined by competition kinetics, k2 = 1.0 × 108 and 1.4 × 107 M−1 s−1 at 25 °C and pH 7.4, respectively. Excess of both oxidants inactivated the enzyme by overoxidation and also tyrosine nitration and dityrosine were observed with peroxynitrite treatment. Prx2 associates into decamers (5 homodimers) and we estimated a dissociation constant Kd < 10−23 M4 which confirms the enzyme exists as a decamer in vivo. Our kinetic results indicate Prx2 is a key antioxidant enzyme for the erythrocyte and reveal red blood cells as active oxidant scrubbers in the bloodstream.  相似文献   

6.
Catalase-peroxidases (KatGs) are unique bifunctional heme peroxidases that exhibit peroxidase and substantial catalase activities. Nevertheless, the reaction pathway of hydrogen peroxide dismutation, including the electronic structure of the redox intermediate that actually oxidizes H2O2, is not clearly defined. Several mutant proteins with diminished overall catalase but wild-type-like peroxidase activity have been described in the last years. However, understanding of decrease in overall catalatic activity needs discrimination between reduction and oxidation reactions of hydrogen peroxide. Here, by using sequential-mixing stopped-flow spectroscopy, we have investigated the kinetics of the transition of KatG compound I (produced by peroxoacetic acid) to its ferric state by trapping the latter as cyanide complex. Apparent bimolecular rate constants (pH 6.5, 20 °C) for wild-type KatG and the variants Trp122Phe (lacks KatG-typical distal adduct), Asp152Ser (controls substrate access to the heme cavity) and Glu253Gln (channel entrance) are reported to be 1.2 × 104 M− 1 s− 1, 30 M− 1 s− 1, 3.4 × 103 M− 1 s− 1, and 8.6 × 103 M− 1 s− 1, respectively. These findings are discussed with respect to steady-state kinetic data and proposed reaction mechanism(s) for KatG. Assets and drawbacks of the presented method are discussed.  相似文献   

7.
Human peroxiredoxin 5 (PRDX5) catalyzes different peroxides reduction by enzymatic substitution mechanisms. Enzyme oxidation caused an increase in Trp84 fluorescence, allowing performing pre-steady state kinetic measurements. The technique was validated by comparing with data available from the literature or obtained herein by alternative approaches. PRDX5 reacted with organic hydroperoxides with rate constants in the 106-107 M−1 s−1 range, similar to peroxynitrite-mediated PRDX5 oxidation, whereas its reaction with hydrogen peroxide was slower (105 M−1 s−1). The method allowed determining the kinetics of intramolecular disulfide formation as well as thioredoxin 2-mediated reduction. The reactivities of PRDXs with peroxides were surprisingly high considering thiol pKa, indicating that other protein determinants are involved in PRDXs specialization. The order of reactivities between PRDX5 towards oxidizing substrates differ from other PRDXs studied, pointing to a selective action of PRDXs with respect to peroxide detoxification, helping to rationalize the multiple enzyme isoforms present even in the same cellular compartment.  相似文献   

8.
The thermodynamics of the drug-inhibitors acyclovir, ganciclovir, and 9-benzylguanine binding to human purine nucleoside phosphorylase (hsPNP) were determined from isothermal titration calorimetry as a function of the substrate phosphate ion (Pi) concentration from 0 to 0.125 M and temperature from 15 °C to 35 °C. At 25 °C and with an increase in the Pi concentration from 0 to 50 mM, acyclovir binding becomes more entropically-driven and ganciclovir binding becomes more enthalpically-driven. At 25 °C, the tighter 9-benzylguanine binding reaction goes from an enthalpically-driven reaction in the absence of Pi to an entropically-driven reaction at 10 mM Pi, and the enthalpically-driven nature of the binding reaction is restored at 75 mM Pi. Since the dependencies of the driving-nature of the binding reactions on Pi concentration can be simulated by Pi binding to its catalytic site, it is believed that bound Pi affects the interactions of the side-chains with the ribose catalytic site. However, the binding constants are unaffected by change in the bound Pi concentration because of enthalpy-entropy compensation. The enzymatic activity of hsPNP was determined by an ITC-based assay employing 7-methylguanosine and Pi as the substrates. The heat of reaction determined from the assay increased by 7.5 kJ mol−1 with increase in Pi concentration from 50 to 100 mM and is attributed to weak binding of the Pi to a secondary regulatory site. Although the binding constants of acyclovir and ganciclovir at 20 μM hsPNP were in agreement with the inverse inhibition constants determined from the ITC enzyme inhibition assays at 60 nM, the binding constant of 9-benzylguanine, which interacts with Phe159 from an adjacent subunit, decreased from 5.62 × 105 M−1 to 1.14 × 105 M−1. This reduction in the 9-benzylguanine binding affinity along with a 7-fold increase in the specific activity of hsPNP at 14.5 nM results from partial dissociation of the hsPNP trimer into monomers below the 60 nM level.  相似文献   

9.
The heme-containing enzyme myeloperoxidase (MPO) accumulates at inflammatory sites and is able to catalyse one- and two-electron oxidation reactions. Here it is shown that (-)-epicatechin, which is known to have numerous beneficial health effects, in low micromolar concentration enhances the degradation of monochlorodimedon (MCD) or the chlorination of taurine in a concentration-dependent bell-shaped manner whereas at higher concentrations it sufficiently suppresses the release of hypochlorous acid. Presented reaction mechanisms demonstrate the efficiency of micromolar concentrations of the flavan-3-ol in overcoming the accumulation of compound II that does not participate in the chlorination cycle. In case of MCD the mechanism is more complicated since it also acts as peroxidase substrate with very different reactivity towards compound I (3 × 105 M−1 s−1) and compound II (8.8 M−1 s−1) at pH 7. By affecting the chlorinating activity of myeloperoxidase (-)-epicatechin may participate in regulation of immune responses at inflammatory sites.  相似文献   

10.
Copper(II) complex with a new ligand 1,4,7-tris(carbamoylethyl)-1,4,7-triazacyclononane (L) has been synthesized and characterized by elemental analysis, FT-IR, ES-MS, UV-Vis and cyclic voltammetry. Determined by X-ray analysis, the crystal structure shows the metal center is six-coordinated. The compound can catalyze the oxygenation of ethyl phenyl sulfide (EPS) utilizing H2O2 under ambient conditions. EPS was converted to the corresponding sulfoxide and sulfone step by step which was confirmed by 1H NMR spectra. The existence of sulfoxide and sulfone was identified by GC-MS. The gradually disappearance of EPS’s ultraviolet absorption at 290 nm was significantly correlated with the rates of sulfide consumption. The initial reaction rate during the first 3 h is consistent with the first-order law in substrate concentration. The averaged pseudo-first-order rate constant is calculated to be (2.25 ± 0.42) × 10−3 min−1 at 25 °C and (4.44 ± 0.17) × 10−3 min−1 at 30 °C. The oxidation product is almost sulfoxide by choosing the molar concentrations of Cu complex (2% of substrate) and H2O2 (seven times as much as substrate).  相似文献   

11.
An in situ respirometric technique was applied to a sequential biofilm batch reactor treating a synthetic wastewater containing acetate. In this reactor, inoculated with mixed liquor from a wastewater plant, unglazed ceramic tiles were used as support media while maintaining complete mixing regime. A total of 8 kinetic and stoichiometric parameters were determined by in situ pulse respirometry; namely substrate oxidation yield, biomass growth yield, storage yield, storage growth yield, substrate affinity constant, storage affinity constant, storage kinetic constant and maximum oxygen uptake rate. Additionally, biofilm growth was determined from support media sampling showing that the colonization process occurred during the first 40 days, reaching an apparent steady-state afterward. Similarly, most of the stoichiometric and kinetic parameters were changing over time but reached steady values after day 40. During the experiment, the respirometric method allowed to quantify the amount of substrate directed to storage, which was significant, especially at substrate concentration superior to 30 mg COD L−1. The Activated Sludge Model 3 (ASM3), which is a model that takes into account substrate storage mechanisms, fitted well experimental data and allowed confirming that feast and famine cycles in SBR favor storage. These results also show that in situ pulse respirometry can be used for fixed-bed reactors characterization.  相似文献   

12.
Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32 ± 0.16 M−1 s−1 and 0.34 ± 0.15 s−1, respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1 ± 0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a “peroxygenase”-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min−1 at pH 6.0.  相似文献   

13.
Low concentrations of urea and GuHCl (2 M) enhanced the activity of endoglucanase (EC 3.1.2.4) from Aspergillus aculeatus by 2.3- and 1.9-fold, respectively. The Km values for controls, in the presence of 2 M urea and GuHCl, were found to be 2.4 ± 0.2 × 10−8 mol L−1, 1.4 ± 0.2 × 10−8 mol L−1, and 1.6 ± 0.2 × 10−8 mol L−1, respectively. The dissociation constant (Kd) showed changes in the affinity of the enzyme for the substrate with increases in the Kcat suggesting an increased turnover number in the presence of urea and GuHCl. Fluorescence studies showed changes in the microenvironment of the protein. The increase in the activity of this intermediate state was due to conformational changes accompanied by increased flexibility at the active site.  相似文献   

14.
Metagenomic resources representing ruminal bacteria were screened for novel exocellulases using a robotic, high-throughput screening system, the novel CelEx-BR12 gene was identified and the predicted CelEx-BR12 protein was characterized. The CelEx-BR12 gene had an open reading frame (ORF) of 1140 base pairs that encoded a 380-amino-acid-protein with a predicted molecular mass of 41.8 kDa. The amino acid sequence was 83% identical to that of a family 5 glycosyl hydrolase from Prevotella ruminicola 23. Codon-optimized CelEx-BR12 was overexpressed in Escherichia coli and purified using Ni–NTA affinity chromatography. The Michaelis–Menten constant (Km value) and maximal reaction velocity (Vmax values) for exocellulase activity were 12.92 μM and 1.55 × 104 μmol min−1, respectively, and the enzyme was optimally active at pH 5.0 and 37 °C. Multifunctional activities were observed against fluorogenic and natural glycosides, such as 4-methylumbelliferyl-β-d-cellobioside (0.3 U mg−1), CMC (105.9 U mg−1), birch wood xylan (132.3 U mg−1), oat spelt xylan (67.9 U mg−1), and 2-hydroxyethyl-cellulose (26.3 U mg−1). Based on these findings, we believe that CelEx-BR12 is an efficient multifunctional enzyme as endocellulase/exocellulase/xylanase activities that may prove useful for biotechnological applications.  相似文献   

15.
Olive-mill wastewater (OMW) was investigated for its suitability to serve as a medium for lipase production by Candida cylindracea NRRL Y-17506. The OMW that best supported enzyme production was characterized by low COD and low total sugars content. In shake flask batch cultures, OMW supplementation with 2.4 g l−1 NH4Cl and 3 g l−1 olive oil led to an enzyme activity of about 10 U ml−1. The addition of glucose or malt extract and supplements containing organic N (e.g., peptone, yeast extract) either depressed or did not affect the enzyme production. Further experiments were then performed in a 3-l stirred tank reactor to assess the impact of medium pH and stirring speed on the yeast enzyme activity. The lipase activity was low (1.8 U ml−1) when the pH was held constant at 6.5, significantly increased (18.7 U ml−1) with uncontrolled pH and was maximum (20.4 U ml−1) when the pH was let free to vary below 6.5. A stirring regime, that varied depending on the dissolved oxygen concentration in the medium, both prevented the occurrence of anoxic conditions during the exponential growth phase and enabled good lipase production (i.e., 21.6 U ml−1) and mean volumetric productivity (i.e., 123.5 U l−1 h−1).  相似文献   

16.
The glycated hemoglobin (HbA1c) level in blood is a measure of long-term glycemic status in patients with diabetes mellitus. Current clinical methods for determination of the HbA1c level include electrophoresis/electroendosmosis, ion exchange chromatography, high-performance liquid chromatography, boronate affinity chromatography, immunoassay, and liquid chromatography–tandem mass spectroscopy in addition to fluorometry and colorimetry. These methods have certain drawbacks such as being complex, time-consuming, and requiring expensive apparatus and trained persons to operate. These drawbacks were overcome by biosensing methods. We review these biosensors, which are based on (i) measurement of electrons, that is, current generated from splitting of hydrogen peroxide released during oxidation of fructosyl valine by immobilized fructosyl amino acid oxidase, which is directly proportional to HbA1c concentration, and (ii) direct measurement of HbA1c by some specific reaction. HbA1c biosensors work optimally within 4 to 1800 s, between pH 7.0 and 9.0 and between 25 and 45 °C, and in the range of 1 to 10,000 μM, with a detection limit between 20 and 500 μM and sensitivity between 4.6 nA and 21.5 μA mM−1 cm−2 and stable over a period of 5 to 90 days. We suggest the ways to modify existing HbA1c biosensors, leading to simple, reliable, and economical sensors ideally suited for point-of-care treatment.  相似文献   

17.
Adenosine phosphorylase, a purine nucleoside phosphorylase endowed with high specificity for adenine nucleosides, was purified 117-fold from vegetative forms of Bacillus cereus. The purification procedure included ammonium sulphate fractionation, pH 4 treatment, ion exchange chromatography on DEAE-Sephacel, gel filtration on Sephacryl S-300 HR and affinity chromatography on N6-adenosyl agarose. The enzyme shows a good stability to both temperature and pH. It appears to be a homohexamer of 164 ± 5 kDa. Kinetic characterization confirmed the specificity of this phosphorylase for 6-aminopurine nucleosides. Adenosine was the preferred substrate for nucleoside phosphorolysis (kcat/Km 2.1 × 106 s− 1 M− 1), followed by 2′-deoxyadenosine (kcat/Km 4.2 × 105 s− 1 M− 1). Apparently, the low specificity of adenosine phosphorylase towards 6-oxopurine nucleosides is due to a slow catalytic rate rather than to poor substrate binding.  相似文献   

18.
The composite film based on Nafion and hydrophilic room temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium chloride ([bmim]Cl) was used as an immobilization matrix to entrap myoglobin (Mb). The study of ionic liquid (IL)-Mb interaction by ultraviolet-visible (UV-vis) spectroscopy showed that Mb retains its native conformation in the presence of IL. The immobilized Mb displayed a pair of well-defined cyclic voltammetric peaks with a formal potential (Eo) of −0.35 V in a 0.1 M phosphate buffer solution (PBS) of pH 7.0. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide, based on which a mediator-free amperometric biosensor for hydrogen peroxide was designed. The linear range for the determination of hydrogen peroxide was from 1.0 to 180 μM with a detection limit of 0.14 μM at a signal/noise ratio of 3. The apparent Michaelis constant () for the electrocatalytic reaction was 22.6 μM. The stability, repeatability, and selectivity of the sensor were evaluated. The proposed biosensor has a lower detection limit than many other IL-heme protein-based biosensors and is free from common interference in hydrogen peroxide biosensors.  相似文献   

19.
The joint substitution of three active-site residues in Escherichia colil-aspartate aminotransferase increases the ratio of l-cysteine sulfinate desulfinase to transaminase activity 105-fold. This change in reaction specificity results from combining a tyrosine-shift double mutation (Y214Q/R280Y) with a non-conservative substitution of a substrate-binding residue (I33Q). Tyr214 hydrogen bonds with O3 of the cofactor and is close to Arg374 which binds the α-carboxylate group of the substrate; Arg280 interacts with the distal carboxylate group of the substrate; and Ile33 is part of the hydrophobic patch near the entrance to the active site, presumably participating in the domain closure essential for the transamination reaction. In the triple-mutant enzyme, kcat′ for desulfination of l-cysteine sulfinate increased to 0.5 s− 1 (from 0.05 s− 1 in wild-type enzyme), whereas kcat′ for transamination of the same substrate was reduced from 510 s− 1 to 0.05 s− 1. Similarly, kcat′ for β-decarboxylation of l-aspartate increased from < 0.0001 s− 1 to 0.07 s− 1, whereas kcat′ for transamination was reduced from 530 s− 1 to 0.13 s− 1. l-Aspartate aminotransferase had thus been converted into an l-cysteine sulfinate desulfinase that catalyzes transamination and l-aspartate β-decarboxylation as side reactions. The X-ray structures of the engineered l-cysteine sulfinate desulfinase in its pyridoxal-5′-phosphate and pyridoxamine-5′-phosphate form or liganded with a covalent coenzyme-substrate adduct identified the subtle structural changes that suffice for generating desulfinase activity and concomitantly abolishing transaminase activity toward dicarboxylic amino acids. Apparently, the triple mutation impairs the domain closure thus favoring reprotonation of alternative acceptor sites in coenzyme-substrate intermediates by bulk water.  相似文献   

20.
Human myeloperoxidase (MPO) uses hydrogen peroxide generated by the oxidative burst of neutrophils to produce an array of antimicrobial oxidants. During this process MPO is irreversibly inactivated. This study focused on the unknown role of hydrogen peroxide in this process. When treated with low concentrations of H2O2 in the absence of reducing substrates, there was a rapid loss of up to 35% of its peroxidase activity. Inactivation is proposed to occur via oxidation reactions of Compound I with the prosthetic group or amino acid residues. At higher concentrations hydrogen peroxide acts as a suicide substrate with a rate constant of inactivation of 3.9 × 10−3 s−1. Treatment of MPO with high H2O2 concentrations resulted in complete inactivation, Compound III formation, destruction of the heme groups, release of their iron, and detachment of the small polypeptide chain of MPO. Ten of the protein’s methionine residues were oxidized and the thermal stability of the protein decreased. Inactivation by high concentrations of H2O2 is proposed to occur via the generation of reactive oxidants when H2O2 reacts with Compound III. These mechanisms of inactivation may occur inside neutrophil phagosomes when reducing substrates for MPO become limiting and could be exploited when designing pharmacological inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号