首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Chu  P Volpe  B Costello  S Fleischer 《Biochemistry》1986,25(25):8315-8324
Junctional terminal cisternae are a recently isolated sarcoplasmic reticulum fraction containing two types of membranes, the junctional face membrane with morphologically intact "feet" structures and the calcium pump membrane [Saito, A., Seiler, S., Chu, A., & Fleischer, S. (1984) J. Cell Biol. 99, 875-885]. In this study, the Ca2+ fluxes of junctional terminal cisternae are characterized and compared with three other well-defined fractions derived from the sarcotubular system of fast-twitch skeletal muscle, including light and heavy sarcoplasmic reticulum, corresponding to longitudinal and terminal cisternae regions of the sarcoplasmic reticulum, and isolated triads. Functionally, junctional terminal cisternae have low net energized Ca2+ transport measured in the presence or absence of a Ca2+-trapping anion, as compared to light and heavy sarcoplasmic reticulum and triads. Ca2+ transport and Ca2+ pumping efficiency can be restored to values similar to those of light sarcoplasmic reticulum with ruthenium red or high [Mg2+]. In contrast to junctional terminal cisternae, heavy sarcoplasmic reticulum and triads have higher Ca2+ transport and are stimulated less by ruthenium red. Heavy sarcoplasmic reticulum appears to be derived from the nonjunctional portion of the terminal cisternae. Our studies indicate that the decreased Ca2+ transport is referable to the enhanced permeability to Ca2+, reflecting the predominant localization of Ca2+ release channels in junctional terminal cisternae. This conclusion is based on the following observations: The Ca2+, -Mg2+ -dependent ATPase activity of junctional terminal cisternae in the presence of a Ca2+ ionophore is comparable to that of light sarcoplasmic reticulum when normalized for the calcium pump protein content; i.e., the enhanced Ca2+ transport cannot be explained by a faster turnover of the pump. Ruthenium red or elevated [Mg2+] enhances energized Ca2+ transport and Ca2+ pumping efficiency in junctional terminal cisternae so that values approaching those of light sarcoplasmic reticulum are obtained. Rapid Ca2+ efflux in junctional terminal cisternae can be directly measured and is blocked by ruthenium red or high [Mg2+]. Ryanodine at pharmacologically significant concentrations blocks the ruthenium red stimulation of Ca2+ loading. Ryanodine binding in junctional terminal cisternae, which appears to titrate Ca2+ release channels, is 2 orders of magnitude lower than the concentration of the calcium pump protein. By contrast, light sarcoplasmic reticulum has a high Ca2+ loading rate and slow Ca2+ efflux that are not modulated by ruthenium red, ryanodine, or Mg2+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Heavy sarcoplasmic reticulum vesicles, labelled with the Ca2+ release channel probe [3H]ryanodine, were solubilized in detergent, then centrifuged through sucrose gradients. A single peak of ryanodine binding activity was observed with an apparent sedimentation coefficient of 30S. Electron microscopy of the peak fraction showed disk structures of 25-28 nm diameter and 10 nm thickness. Proteins specifically enriched in the peak fraction were the Mr 160,000 and 260,000 and junctional feet proteins (Mr 320,000 and 300,000). This suggests that the feet proteins and ryanodine receptor may be specifically associated into a large oligomeric complex comprising subunits of Mr 160,000-320,000.  相似文献   

3.
Phospholipase A has been solubilized from the sarcoplasmic reticulum of rat heart by treatment with Tris buffer, potassium chloride, taurodeoxycholate or octyl glucoside. On HPLC gel permeation, two phospholipases were identified at the void volume of a TSK 3000 column and at an apparent molecular mass of 60 kDa. The two activity peaks exhibited a predominance of phospholipase A1 activity (83-91%) and a lesser phospholipase C activity (4-9%) using sonicated 1-palmitoyl-2[1-14C]oleoylphosphatidylcholine liposomes as substrate. The voiding phospholipase A peak, which represented the bulk of the recovered activity, exhibited a requirement for calcium ions in the 0.3-3 microM range. The heat stability and response to mercuric ions was studied and some similarities were noted between the solubilized sarcoplasmic reticulum phospholipases A and the cytosolic phospholipases A of rat heart. It is speculated that the cytosolic phospholipase A which we reported earlier may represent in part phospholipase A released from sarcoplasmic reticulum during isolation of the subcellular membrane fractions.  相似文献   

4.
5.
6.
Trypsin digestion of junctional sarcoplasmic reticulum vesicles   总被引:1,自引:0,他引:1  
A Chu  C Sumbilla  D Scales  A Piazza  G Inesi 《Biochemistry》1988,27(8):2827-2833
A putative constituent of the junctional processes, connecting the terminal cisternae of sarcoplasmic reticulum and the transverse tubules of skeletal muscle fibers, is a greater than or equal to 350,000-dalton (Da) protein that displays ryanodine binding and Ca2+ channel properties. Ryanodine modulation of Ca2+ fluxes suggests that the ryanodine receptor and calcium channel are integral parts of one functional unit corresponding to the greater than or equal to 350,000-Da protein [Inui, M., Saito, E., & Fleischer, S. (1987) J. Biol. Chem. 262, 1740-1747; Campbell, K. P., Knudson, C. M., Imagawa, T., Leung, A. L., Sutko, J. L., Kahl, S. D., Raab, C. R., & Madson, L. (1987) J. Biol. Chem. 262, 6460-6463]. We subjected vesicular fragments of junctional-cisternal membrane to stepwise trypsin digestion. The greater than or equal to 350,000-Da protein is selectively cleaved in the early stage of digestion, with consequent disappearance of the corresponding band in electrophoretic gels. The Ca2+-ATPase is cleaved at a later stage, while calsequestrin is not digested under the same experimental conditions. While the Ca2+-ATPase yields two complementary fragments that are relatively resistant to further digestion, the greater than or equal to 350,000-Da protein yields fragments that are rapidly broken down to small peptides. Under conditions producing extensive digestion of the greater than or equal to 350,000-Da protein, the junctional processes are still visualized by electron microscopy, with no discernible alterations of their ultrastructure. The functional properties of the Ca2+ release channel are also maintained following trypsin digestion, including blockage by Mg2+ and ruthenium red and activation by Ca2+ and nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
The interaction of lanthanides with isolated sarcoplasmic reticulum (SR) vesicles from rabbit skeletal muscle and the effects of lanthanides on 45Ca2+ uptake by the vesicles were studied. 153Gd3+ was taken up by the vesicles in the absence of ATP and oxalate in a time-dependent manner, reaching a maximum total accumulation of 380 nmol 153Gd3+/mg protein after 20 min with 200 microM 153Gd3+. This 153Gd3+ accumulation was not washed out by 1 mM EGTA. The addition of ATP induced the release of 87% of the bound 153Gd3+, leaving behind irreversibly-accumulated 153Gd3+. Pre-incubation of the vesicles with lanthanides in the absence of ATP and oxalate inhibited 45Ca2+ uptake without affecting Ca2+-ATPase activity. The percent inhibition of 45Ca2+ uptake increased with length of pre-incubation of the vesicles with lanthanides, reaching 33% after 20 min of pre-incubation. Increasing the 45Ca2+ concentration or adding ATP or oxalate to the preincubation medium abolished these inhibitory effects on 45Ca2+ uptake.  相似文献   

9.
The active uptake and efflux of Ca2+ from suspensions of vesicles from heavy rabbit muscle sarcoplasmic reticulum have been examined using the antipyrylazo III dye method in the presence of various nucleotide triphosphate substrates to support active Ca2+ accumulation. On addition of ATP, Ca2+ is rapidly accumulated and maintained at high internal concentrations until the substrate for pump protein is exhausted. Ca2+-induced Ca2+ release which is inhibited by ruthenium red can be demonstrated. The kinetics of Ca2+ release via these channels is different from the Ca2+ efflux observed after substrate exhaustion. This rate was found to be dependent on the type of nucleotide triphosphate, decreasing in the order ATP greater than GTP greater than CTP greater than ITP UTP. It is suggested that different conformations of the Ca2+ pump protein induced by the different substrates may result in the creation of pathways for the facilitated diffusion of Ca2+.  相似文献   

10.
Chloride channels in the sarcoplasmic reticulum (SR) are thought to play an essential role in excitation-contraction (E-C) coupling by balancing charge movement during calcium release and uptake. In this study the nucleotide-sensitivity of Cl channels in the SR from rabbit skeletal muscle was investigated using the lipid bilayer technique. Two distinct ATP-sensitive Cl channels that differ in their conductance and kinetic properties and in the mechanism of ATP-induced channel inhibition were observed. The first, a nonfrequent 150 pS channel was inhibited by trans (luminal) ATP, and the second, a common 75 pS small chloride (SCl) channel was inhibited by cis (cytoplasmic) ATP. In the case of the SCl channel the ATP-induced reversible decline in the values of current (maximal current amplitude, I max and integral current, I′) and kinetic parameters (frequency of opening F O , probability of the channel being open P O , mean open T O and closed T c times) show a nonspecific block of the voltage- and Ca2+-dependent SCl channel. ATP was a more potent blocker from the cytoplasmic side than from the luminal side of the channel. The SCl channel block was not due to Ca2+ chelation by ATP, nor to phosphorylation of the channel protein. The inhibitory action of ATP was mimicked by the nonhydrolyzable analogue adenylylimidodiphosphate (AMP-PNP) in the absence of Mg2+. The inhibitory potency of the adenine nucleotides was charge dependent in the following order ATP4− > ADP3− > > > AMP2−. The data suggest that ATP-induced effects are mediated via an open channel block mechanism. Modulation of the SCl channel by [ATP] cis and [Ca2+] cis indicates that (i) this channel senses the bioenergetic state of the muscle fiber and (ii) it is linked to the ATP-dependent cycling of the Ca2+ between the SR and the sarcoplasm. Received: 4 September 1996/Revised: 6 December 1996  相似文献   

11.
12.
Minor protein components of triads and of sarcoplasmic reticulum (SR) terminal cisternae (TC), i.e. 47 and 37 kDa peptides and 31-30 kDa and 26-25 kDa peptide doublets, were identified from their ability to bind 125I calsequestrin (CS) in the presence of EGTA. The CS-binding peptides are specifically associated with the junctional membrane of TC, since they could not be detected in junctional transverse tubules and in longitudinal SR fragments. The 31-30 kDa peptide doublet, exclusively, did not bind CS in the presence of Ca2+. Thus, different types of protein-protein interactions appear to be involved in selective binding of CS to junctional TC.  相似文献   

13.
Longitudinal tubules and junctional sarcoplasmic reticulum (SR) were prepared from heart muscle microsomes by Ca2+-phosphate loading followed by sucrose density gradient centrifugation. The longitudinal SR had a high Ca2+ loading rate (0.93 +/- 0.08 mumol.mg-1.min) which was unchanged by addition of ruthenium red. Junctional SR had a low Ca2+ loading rate (0.16 +/- 0.02 mumol.mg-1.min) which was enhanced about 5-fold by ruthenium red. Junctional SR had feet structures observed by electron microscopy and a high molecular weight protein with Mr of 340,000, whereas longitudinal SR was essentially devoid of both. Thus, these subfractions have similar characteristics to longitudinal and junctional terminal cisternae of SR from fast twitch skeletal muscle. Ryanodine binding was localized to junctional cardiac SR as determined by [3H]ryanodine binding. Scatchard analysis of the binding data showed two types of binding (high affinity, Kd approximately 7.9 nM; low affinity, Kd approximately 1 microM), contrasting with skeletal junctional terminal cisternae where only one site with Kd of approximately 50 nM was observed. The ruthenium red enhancement of Ca2+ loading rate in junctional cardiac SR was blocked by pretreatment with low concentrations of ryanodine as reported for junctional terminal cisternae of skeletal muscle SR. The Ca2+ loading rate of junctional cardiac SR was enhanced by preincubation with high concentrations of ryanodine. The apparent inhibition constant (Ki approximately 7 nM) and stimulation constant (Km approximately 1.1 microM) for ryanodine on junctional SR corresponded to the Kd for high affinity binding (Kd approximately 7.9 nM) and low affinity binding (Kd approximately 1.1 microM), respectively. These results suggest that high affinity ryanodine binding locks the Ca2+ release channels in the open state and that low affinity binding closes the Ca2+ release channels of the junctional cardiac SR. The characteristics of the Ca2+ release channels of junctional cardiac SR appear to be similar to that of skeletal muscle SR, but the Ca2+ release channels of cardiac SR are more sensitive to ryanodine.  相似文献   

14.
15.
A comparison is made of two types of chloride-selective channel in skeletal muscle sarcoplasmic reticulum (SR) vesicles incorporated into lipid bilayers. The I/V relationships of both channels, in 250/50 mM Cl- (cis/trans), were linear between -20 and +60 mV (cis potential,) reversed near Ecl and had slope conductances of approximately 250 pS for the big chloride (BCl) channel and approximately 70 pS for the novel, small chloride (SCl) channel. The protein composition of vesicles indicated that both channels originated from longitudinal SR and terminal cisternae. BCl and SCl channels responded differently to cis SO4(2-) (30-70 mM), 4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid (8-80 microM) and to bilayer potential. The BCl channel open probability was high at all potentials, whereas SCl channels exhibited time-dependent activation and inactivation at negative potentials and deactivation at positive potentials. The duration and frequency of SCl channel openings were minimal at positive potentials and maximal at -40 mV, and were stationary during periods of activity. A substate analysis was performed using the Hidden Markov Model (S. H. Chung, J. B. Moore, L. Xia, L. S. Premkumar, and P. W. Gage, 1990, Phil. Trans. R. Soc. Lond. B., 329:265-285) and the algorithm EVPROC (evaluated here). SCl channels exhibited transitions between 5 and 7 conductance levels. BCl channels had 7-13 predominant levels plus many more short-lived substates. SCl channels have not been described in previous reports of Cl- channels in skeletal muscle SR.  相似文献   

16.
Fragmented sarcoplasmic reticulum (FSR) of bullfrog skeletal muscle was fractionated into light and heavy sarcoplasmic reticulum (LSR and HSR) by sucrose density gradient centrifugation. Morphological and biochemical studies revealed that large parts of LSR and HSR were derived from longitudinal reticulum and terminal cisternae of SR, respectively. The Ca2+ uptake ability and ATPase activity of LSR were higher than those of HSR. Ca2+ release from Ca2+ preloaded SR vesicles by changing the medium from K-gluconate to KCl was suppressed by addition of 0.3 M sucrose or glucose; there was no correlation between Ca2+ release and membrane potential change either in LSR or HSR vesicles. Dantrolene sodium (DAN, 20 microM) had no effect on Ca2+ release. It is concluded that ion-induced Ca2+ release from SR (both HSR and LSR) in the isolated system is due to an osmotic effect.  相似文献   

17.
Sarcoplasmic reticulum (SR) serves a central role in calcium uptake and release, thereby regulating muscle relaxation and contraction, respectively. Recently, we have isolated fractions referable to longitudinal tubules (R2) and terminal cisternae (R4), the two major types of sarcoplasmic reticulum (A. Saito et al. (1984) J. Cell Biol. 99, 875-885). The terminal cisternae contain two types of membranes, the calcium pump membrane and the junctional face membrane. The terminal cisternae are filled with electron-opaque contents which serve as a Ca2+ reservoir. The longitudinal tubules consist mainly of the calcium pump membrane. In this study, we describe a new longitudinal tubule fraction (F2) and characterize it together with the R2 and R4 SR fractions. The calcium pump membrane of the longitudinal tubules is a highly specialized membrane consisting of about 90% calcium pump protein as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Extensive changes in morphology can be observed in the SR fractions referable to osmotic differences during the fixation conditions using either glutaraldehyde-tannic acid or osmium tetroxide fixatives. The changes include swelling or shrinkage and aggregation of the compartmental contents when the fixative contains calcium ions. The two types of SR have different osmotic permeability to the same medium, as indicated by differential swelling or shrinkage. Both longitudinal tubule and terminal cisternae vesicles of SR appear larger and are spherical vesicles when the glutaraldehyde-tannic acid fixative is isotonic as compared with the "standard" fixation method. We have previously reported that the ruthenium red-sensitive calcium release channels are localized to the terminal cisternae. The terminal cisternae as isolated are leaky to Ca2+ since these channels are in the "open state" (S. Fleischer et al. (1985) Proc. Natl. Acad. Sci USA 82, 7256-7259). Thus, the Ca2+, Mg2+-dependent ATPase (Ca2+ ATPase) rate is only slightly enhanced in the presence of a Ca2+ ionophore, which dissipates the Ca2+ gradient across the SR membrane. We now find that preincubation with ruthenium red restores the tight coupling of the Ca2+ ATPase activity to Ca2+ transport. That is to say, ATPase activity is reduced and the addition of ionophore stimulates the Ca2+ ATPase activity 4- to 7-fold. The Ca2+ ATPase activity in longitudinal tubules is already tightly coupled. It is minimal after a Ca2+ gradient has been generated, but can be stimulated 9- to 20-fold when the Ca2+ gradient is dissipated with ionophore. This finding suggests that the Ca2+ ATPase activity in SR is tightly coupled to Ca2+ transport in situ.  相似文献   

18.
19.
Although it is well established that voltage-sensing of the alpha(1)-dihydropyridine receptor triggers Ca(2+)-release via the ryanodine receptor during excitation-contraction coupling in skeletal muscle fibers, it remains to be determined which junctional components are responsible for the assembly, maintenance, and stabilization of triads. Here, we analyzed the expression pattern and neighborhood relationship of a novel 90-kDa sarcoplasmic reticulum protein. This protein is highly enriched in the triad fraction and is predominantly expressed in fast-twitching muscle fibers. Chronic low-frequency electro-stimulation induced a drastic decrease in the relative abundance of this protein. Chemical crosslinking showed a potential overlap between the 90-kDa junctional face membrane protein and the ryanodine receptor Ca(2+)-release channel, suggesting tight protein-protein interactions between these two triad components. Hence, Ca(2+)-regulatory muscle proteins have a strong tendency to oligomerize and the triad region of skeletal muscle fibers forms supramolecular membrane complexes involved in the regulation of Ca(2+)-homeostasis and signal transduction.  相似文献   

20.
The ryanodine receptor has been purified from junctional terminal cisternae of fast skeletal muscle sarcoplasmic reticulum (SR). The ryanodine receptor was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and stabilized by addition of phospholipids. The solubilized receptor showed the same [3H]ryanodine binding properties as the original SR vesicles in terms of affinity, Ca2+ dependence, and salt dependence. Purification of the ryanodine receptor was performed by sequential column chromatography on heparin-agarose and hydroxylapatite in the presence of CHAPS. The purified receptor bound 393 +/- 65 pmol of ryanodine/mg of protein (mean +/- S.E., n = 5). The purified receptor showed three bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Mr of 360,000, 330,000, and 175,000. Densitometry indicates that these are present in the ratio of 2/1/1, suggesting a monomer Mr of 1.225 X 10(6) and supported by gel exclusion chromatography in CHAPS. Electron microscopy of the purified preparation showed the square shape of 210 A characteristic of and comparable in size and shape to the feet structures of junctional terminal cisternae of SR, indicating that ryanodine binds directly to the feet structures. From the ryanodine binding data, the stoichiometry between ryanodine binding sites to the number of feet structures is estimated to be about 2. Since the ryanodine receptor is coupled to Ca2+ gating, the present finding suggests that the ryanodine receptor and Ca2+ release channel represent a functional unit, the structural unit being the foot structure which, in situ, is junctionally associated with the transverse tubules. It is across this triad junction that the signal for Ca2+ release is expressed. Thus, the foot structure appears to directly respond to the signal from transverse tubules, causing the release of Ca2+ from the junctional face membrane of the terminal cisternae of SR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号