首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《植物生态学报》2015,39(11):1110
Plants have the ability to discriminate kin members from strangers in competitive interactions and show altruistic behavior towards related individuals. Studies have showed that plants recognize their neighbors and adjust their ecological strategy mainly through leaf volatiles, root secretions and photographic carrier. The target plants can modify their morphological traits (root size, root:shoot ratio, seed numbers etc.) or metabolism characteristics (secondary metabolites, defense-related proteins etc.) when groups of plants shared common resources, so as to minimize competition with close relatives. The density of kin recognition is influenced by environmental conditions. The main reasons for controversial experimental results of kin recognition are associated with plant materials, standard of kin selection, ecological factors and measured indices. Further studies are required to understand the mechanisms of kin interactions in plants from physiological, biochemical, molecular and metabolic levels.  相似文献   

2.
植物的亲缘识别(kin recognition)指植物通过识别周边个体与自己的亲缘关系, 调整自身的生长生态策略、促进亲缘个体的生存与繁衍。研究表明, 植物主要通过特定的叶片挥发物、根系分泌物、感光载体等途径, 识别周边个体与自己的亲缘关系, 改变自身形态学策略(如根系大小、根冠比、种子数量等)或者生理代谢策略(次生代谢物质、防御蛋白等), 调整与周边个体的竞争强度, 缓和与近亲缘个体之间的竞争, 加强与远亲缘或非亲缘个体的竞争。同时亲缘识别的强度也受环境因子(养分等)的影响。结合目前的研究进展, 该文分析了导致亲缘识别的研究结果存在差异或争议的主要原因, 认为主要与实验材料的选择、亲缘关系的界定标准、环境条件及测定的指标不统一有关。将来的研究应重点从生理生化、分子、代谢水平上深入研究植物亲缘识别的机理。  相似文献   

3.
Inclusive fitness theory predicts that organisms will tend to help close kin more than less related individuals. In a variety of birds and mammals, relatives are recognized by comparing their phenotype to an internal representation or template, which might be learned through either repeated exposure to family members or self-inspection. Mirrors are ubiquitous now, but were absent during our evolutionary history; hence it is hard to predict, and empirically unknown, whether human kin recognition is family- or self-referential. Here we put this issue to the strongest possible test by comparing nepotistic behaviour towards self- versus co-twin-resemblant individuals. Seventy monozygotic and dizygotic twins were shown same-sex faces, covertly manipulated to resemble either themselves or their co-twin, and indicated which individual they would prefer in two prosocial contexts. Self-resemblant faces were significantly preferred to twin-resemblant faces, showing that visual information about the self supersedes that about close family members in the kin-recognition template. Because, under conditions of paternal uncertainty, a reliable family-referent template could be based only on one''s mother and maternal relatives, a unique advantage of self-referent phenotype matching is the possibility of (consciously or unconsciously) identifying one''s father and paternal relatives as kin.  相似文献   

4.
The ability to recognize close relatives in order to cooperate or to avoid inbreeding is widespread across all taxa. One accepted mechanism for kin recognition in birds is associative learning of visual or acoustic cues. However, how could individuals ever learn to recognize unfamiliar kin? Here, we provide the first evidence for a novel mechanism of kin recognition in birds. Zebra finch (Taeniopygia guttata) fledglings are able to distinguish between kin and non-kin based on olfactory cues alone. Since olfactory cues are likely to be genetically based, this finding establishes a neglected mechanism of kin recognition in birds, particularly in songbirds, with potentially far-reaching consequences for both kin selection and inbreeding avoidance.  相似文献   

5.
Multiple paternity and kin recognition mechanisms in a guppy population   总被引:2,自引:0,他引:2  
Hain TJ  Neff BD 《Molecular ecology》2007,16(18):3938-3946
Help directed toward kin (nepotism) is an important example of social behaviour. Such helping behaviour requires a mechanism to distinguish kin from nonkin. The prevailing kin recognition hypothesis is that when familiarity is a reliable cue of relatedness, other mechanisms of recognition will not evolve. However, when familiarity is an unreliable cue of relatedness, kin recognition by phenotype matching is instead predicted to evolve. Here we use genetic markers to show that guppies (Poecilia reticulata) from a population in a tributary of the Paria River in Trinidad are characterized by a high degree of multiple mating with 95% of broods having more than one sire and some dams having offspring sired by six males. These levels of multiple mating are the highest reported among live-bearing fishes. The mean relatedness of brood-mates was 0.36 (as compared to 0.5 for full-siblings). Therefore, familiarity does not seem to be a reliable mechanism to assess full-sibling relatedness. Using two-choice behavioural trials, we found that juveniles from this population use both phenotype matching and familiarity to distinguish kin from nonkin. However, we did not find strong evidence that the guppies use these mechanisms to form shoals of related individuals as adults, which is similar to results from other guppy populations in Trinidad. The use of both familiarity and phenotype matching is discussed in the context of the Paria River guppy population's mating system and ecology. Overall, these data provide support for the kin recognition hypothesis and increase our understanding of the evolution of kin recognition systems.  相似文献   

6.
S W Alemu  P Berg  L Janss  P Bijma 《Heredity》2014,112(2):197-206
Social interactions among individuals are widespread, both in natural and domestic populations. As a result, trait values of individuals may be affected by genes in other individuals, a phenomenon known as indirect genetic effects (IGEs). IGEs can be estimated using linear mixed models. The traditional IGE model assumes that an individual interacts equally with all its partners, whether kin or strangers. There is abundant evidence, however, that individuals behave differently towards kin as compared with strangers, which agrees with predictions from kin-selection theory. With a mix of kin and strangers, therefore, IGEs estimated from a traditional model may be incorrect, and selection based on those estimates will be suboptimal. Here we investigate whether genetic parameters for IGEs are statistically identifiable in group-structured populations when IGEs differ between kin and strangers, and develop models to estimate such parameters. First, we extend the definition of total breeding value and total heritable variance to cases where IGEs depend on relatedness. Next, we show that the full set of genetic parameters is not identifiable when IGEs differ between kin and strangers. Subsequently, we present a reduced model that yields estimates of the total heritable effects on kin, on non-kin and on all social partners of an individual, as well as the total heritable variance for response to selection. Finally we discuss the consequences of analysing data in which IGEs depend on relatedness using a traditional IGE model, and investigate group structures that may allow estimation of the full set of genetic parameters when IGEs depend on kin.  相似文献   

7.
Social behaviour in spiders is rare: of the 39 000 species of spiders known, only 23 are considered to be cooperatively social. Delena cancerides is a social species of the huntsman spider that is endemic to Australia. This species is virtually unique among social spiders, having evolved social behaviour in the absence of a snare web. It is thought that this form of social behaviour in D. cancerides has evolved via the sub-social route, that is, the extension of an ancestrally occurring period of maternal care and the delayed dispersal of juveniles. Most social spiders show no aggression towards non-kin conspecifics, prompting suggestions that spiders cannot recognize kin; however, D. cancerides individuals are highly aggressive towards conspecifics introduced from outside their own colony. In order to determine whether selective aggression in D. cancerides has its basis in kin recognition, tolerance behaviour was assessed in the context of kinship and size. We observed that, in general, juveniles preferred to starve than engage in cannibalism of any conspecifics, related or not. However, where cannibalism did occur, non-kin were preferentially eaten, indicating that this species is clearly capable of kin recognition. Size thresholds were also established, below which juveniles are tolerated by adults and above which aggressive interactions leading to death occur. We conclude that kin recognition and juvenile dispersal explain the uncharacteristically high levels of genetic polymorphism in this species.  相似文献   

8.
Richard H. Porter 《Genetica》1998,104(3):259-263
Humans, like other mammals, are capable of discriminating between kin and non‐kin by olfactory cues alone. Shortly after birth, breastfed infants become familiar with, and respond preferentially to, their mother' unique odor signature. Mothers likewise recognize the characteristic scent of their newborn infant. Close biological relatives share somewhat similar odor signatures (presumably resulting from genetically mediated similarities in bodily biochemistry and metabolism) that could facilitate kin recognition. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
10.
11.
12.
  1. Several animal species are known to distinguish between their own eggs and eggs of unrelated conspecifics. However, the cues involved in this discrimination are often unknown. These cues were studied using the predatory mite Gynaeseius liturivorus Ehara.
  2. Adult females of these predatory mites oviposit in clusters and avoid oviposition close to eggs laid by other females, resulting in reduced cannibalism between offspring. Because predatory mites are blind, it was tested whether volatiles of eggs were used as a cue for egg recognition.
  3. Adult female predatory mites were offered volatile cues of their own eggs and of unrelated conspecific eggs, and females were prevented from contacting the eggs. Predatory mites oviposited closer to their own eggs than to unrelated eggs. This preference was observed even when one own and one unrelated egg were offered as a volatile source.
  4. These results suggest that adult female predatory mites can determine kinship using volatiles released from the eggs.
  相似文献   

13.
Kin selection,kin avoidance and correlated strategies   总被引:1,自引:0,他引:1  
Summary Kin selection of correlated strategies is examined for both weak and strong altruism under simple haploid inheritance. While kin assortment enhances the range of evolutionary stability for (strongly altruistic) correlated strategies (defined herein), kin avoidance is possible under a weakly altruistic correlated strategy. When social competition induces role assignments of variable fitness, group mates may prefer association with non-relatives. Even when group life is mandatory, an individual may accept the risk of abandonment (and reproductive death) rather then associate with kin: a competitive superior may behave altruistically by permitting competitively inferior kin to emigrate. Thus, kin selection and social competition are not necessarily mutually supportive processes within groups. I conclude by interpreting dominance as a strongly altruistic correlated strategy in two social hymenopteran contexts.  相似文献   

14.
The ontogeny of kin recognition and influence of social environment on the development of kin recognition behaviour was experimentally investigated in tadpoles of Bufo melanostictus that lived in aggregations and showed low larval dispersion. Embryos and tadpoles of the toad were reared as (i) kin only, (ii) with kin and non-kin (separated by a mesh screen), and (iii) in isolation. They were tested for the ability to discriminate between (i) familiar siblings and unfamiliar non-siblings, (ii) familiar siblings and familiar non-siblings and, (iii) unfamiliar siblings and unfamiliar non-siblings. All tadpoles were fed on boiled spinach before conducting trials. Preference of test tadpoles to associate near the end compartments whether empty or containing members of specific stimulus groups was assessed using a rectangular choice tank. When tested in tanks with empty end compartments, the test tadpoles showed random distribution and thus no bias for the apparatus or the procedure. In the presence of kin/non-kin in the end compartments a significantly greater number of test tadpoles spent the majority of the time near familiar or unfamiliar kin rather than near familiar or unfamiliar non-kin. Kin discrimination ability persisted throughout larval development. Familiarity with siblings is not required for discriminating kin from non-kin, and kin discrimination ability is not modified following exposure to non-kin. Also, involvement of dietary cues is unlikely to be the prime mechanism of kin recognition inB. melanostictus unlike in some other anurans.  相似文献   

15.
In evolutionary terms, life is about reproduction. Yet, in some species, individuals forgo their own reproduction to support the reproductive efforts of others. Social insect colonies for example, can contain up to a million workers that actively cooperate in tasks such as foraging, brood care and nest defence, but do not produce offspring. In such societies the division of labour is pronounced, and reproduction is restricted to just one or a few individuals, most notably the queen(s). This extreme eusocial organisation exists in only a few mammals, crustaceans and insects, but strikingly, it evolved independently up to nine times in the order Hymenoptera (including ants, bees and wasps). Transitions from a solitary lifestyle to an organised society can occur through natural selection when helpers obtain a fitness benefit from cooperating with kin, owing to the indirect transmission of genes through siblings. However, this process, called kin selection, is vulnerable to parasitism and opportunistic behaviours from unrelated individuals. An ability to distinguish kin from non-kin, and to respond accordingly, could therefore critically facilitate the evolution of eusociality and the maintenance of non-reproductive workers. The question of how the hymenopteran brain has adapted to support this function is therefore a fundamental issue in evolutionary neuroethology. Early neuroanatomical investigations proposed that social Hymenoptera have expanded integrative brain areas due to selection for increased cognitive capabilities in the context of processing social information. Later studies challenged this assumption and instead pointed to an intimate link between higher social organisation and the existence of developed sensory structures involved in recognition and communication. In particular, chemical signalling of social identity, known to be mediated through cuticular hydrocarbons (CHCs), may have evolved hand in hand with a specialised chemosensory system in Hymenoptera. Here, we compile the current knowledge on this recognition system, from emitted identity signals, to the molecular and neuronal basis of chemical detection, with particular emphasis on its evolutionary history. Finally, we ask whether the evolution of social behaviour in Hymenoptera could have driven the expansion of their complex olfactory system, or whether the early origin and conservation of an olfactory subsystem dedicated to social recognition could explain the abundance of eusocial species in this insect order. Answering this question will require further comparative studies to provide a comprehensive view on lineage-specific adaptations in the olfactory pathway of Hymenoptera.  相似文献   

16.
Our objective in this study was to evaluate whether a group of paternally related, subadult baboons (Papio cynocephalus) would preferentially interact with kin or nonkin when they had been raised apart from kin other than their mothers. Subjects and their mothers were removed from the breeding group and placed in alternate housing within 24 h after birth to ensure that the subjects would not have a social history with either their sire or their half-siblings. At 90 days of age, the 23 subjects were separated from their mothers and assigned to a peer–peer social group. Behavioral performance was measured using focal animal sampling techniques and 12 molecular behavioral criteria. Analyses of the data indicate that in dyadic interactions kin did not interact more frequently than nonkin in performance of affiliative, sociosexual, and agonistic behaviors. The hypothesis that baboons recognize kin in the absence of maternal associations was not supported by the data; moreover, we suggest that social learning and social history are the most likely mechanisms for kin recognition. Am. J. Primatol. 43:147–157, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
The function of kin recognition is controversial. We investigatedthe adaptive significance of kin discrimination in cannibalistictiger salamander larvae, Ambystoma tigrinum. Previous laboratoryexperiments show that cannibals preferentially consume lessrelated individuals. We hypothesized that this example of kinrecognition (1) is a laboratory artifact, (2) is a by-productof sibship-specific variation in escape responses, because cannibalsfrom families with rapid responses may be more likely to cannibalize slowlyescaping non-kin, (3) is an epiphenomenon of species recognition,(4) functions in disease avoidance, because kin may be moreinfectious than non-kin, or (5) is favored by kin selection.We evaluated these five hypotheses by using laboratory and fieldexperiments to test specific predictions made by each hypothesis.We rejected hypotheses 1-4 above because (1) kin recognitionwas expressed in the wild, (2) escape responses did not reliablypredict whether a cannibal would ingest kin or non-kin, (3)kin recognition was not most pronounced in populations wheretiger salamanders co-occur with other species of salamanders,and (4) non-kin prey were more likely than kin to transmit pathogensto cannibals. However, we established that the necessary conditionfor kin selection, Hamilton's rule, was met. Thus, our resultsimplicate kin selection as the overriding reason that cannibalistictiger salamanders discriminate kin.  相似文献   

18.
Kin recognition, the ability to detect relatives, is important for cooperation, altruism and also inbreeding avoidance. A large body of research on kin recognition mechanisms exists for vertebrates and insects, while little is known for other arthropod taxa. In spiders, nepotism has been reported in social and solitary species. However, there are very few examples of kin discrimination in a mating context, one coming from the orb-weaver Argiope bruennichi. Owing to effective mating plugs and high rates of sexual cannibalism, both sexes of A. bruennichi are limited to a maximum of two copulations. Males surviving their first copulation can either re-mate with the current female (monopolizing paternity) or leave and search for another. Mating experiments have shown that males readily mate with sisters but are more likely to leave after one short copulation as compared with unrelated females, allowing them to search for another mate. Here, we ask whether the observed behaviour is based on chemical cues. We detected family-specific cuticular profiles that qualify as kin recognition cues. Moreover, correlations in the relative amounts of some of the detected substances between sexes within families indicate that kin recognition is likely based on subsets of cuticular substances, rather than entire profiles.  相似文献   

19.
Kin recognition is a key mechanism to direct social behaviours towards related individuals or avoid inbreeding depression. In insects, recognition is generally mediated by cuticular hydrocarbon (CHC) compounds, which are partly inherited from parents. However, in social insects, potential nepotistic conflicts between group members from different patrilines are predicted to select against the expression of patriline-specific signatures in CHC profiles. Whereas this key prediction in the evolution of insect signalling received empirical support in eusocial insects, it remains unclear whether it can be generalized beyond eusociality to less-derived forms of social life. Here, we addressed this issue by manipulating the number of fathers siring clutches tended by females of the European earwig, Forficula auricularia, analysing the CHC profiles of the resulting juvenile and adult offspring, and using discriminant analysis to estimate the information content of CHC with respect to the maternal and paternal origin of individuals. As predicted, if paternally inherited cues are concealed during family life, increases in mating number had no effect on information content of CHC profiles among earwig juveniles, but significantly decreased the one among adult offspring. We suggest that age-dependent expression of patriline-specific cues evolved to limit the risks of nepotism as family-living juveniles and favour sibling-mating avoidance as group-living adults. These results highlight the role of parental care and social life in the evolution of chemical communication and recognition cues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号