首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The human TR2 orphan receptor (TR2), initially isolated from testis and prostate cDNA libraries, is a member of the steroid receptor superfamily. TR2 can regulate several target genes via binding to a consensus response element (AGGTCA) in direct repeat orientation (AGGTCAX((n))AGGTCA, n = 0-6). Here we show that TR2 is able to induce the expression of human papilloma virus type 16 (HPV-16) genes via binding to a DR4 response element in the long control region of HPV-16. Additionally, one of the HPV-16 gene products, the E6 oncogene, regulates TR2 gene expression. A likely mechanism for this regulation involves E6-mediated degradation of the tumor suppressor p53, a protein known to suppress TR2 expression. Together our data provide evidence for feedback regulation between TR2 and HPV-16, which represents a novel regulatory pathway involving a member of the steroid receptor superfamily and the HPV-16 DNA tumor virus.  相似文献   

7.
8.
9.
In our previous studies, the TR4 orphan nuclear receptor (TR4) has been demonstrated to suppress retinoic acid (RA)-induced transactivation via a negative feedback control mechanism and in situ analysis showed that TR4 is extensively expressed in mouse brain, especially in regions where the cells are proliferating. To further study the potential roles of TR4 during cell differentiation, a tetracycline-inducible system with anti-sense TR4 in teratocarcinoma P19 cell lines was generated to analyze the retinoic acid-induced differentiation of these cells. The results indicated that the expression of TR4 reduced by doxycycline anti-sense TR4 would alter the retinoic acid-induced differentiation pathway that results in the changes of cell morphology and cell cycle profile. Unexpectedly, our data further indicated that the RA-induced apoptosis, judging by DNA fragmentation, could also be altered by the induction of anti-sense TR4. Together, these findings provide the first in vivo evidence that an orphan nuclear receptor, such as TR4, may play major roles in the RA-mediated apoptosis or differentiation in P19 cells.  相似文献   

10.
11.
核孤儿受体TR3/nur77是一种立刻早期基因(immediate-early gene)的产物,与固醇类激素受体结构相似,是核受体超家族的重要成员之一,可被多种生长因子或凋亡诱导剂诱导表达,具有复杂的生物学功能,涉及细胞增殖、分化发育和凋亡过程.最近对其诱导凋亡机制的研究取得了重大进展,发现当细胞受到凋亡诱导剂刺激后,TR3基因表达升高,其产物从细胞核移位至线粒体膜,引起细胞色素c释放,从而导致细胞凋亡.即TR3的转录激活功能和诱导凋亡功能是由其不同的亚细胞定位结合所决定的,其诱导凋亡过程与其对基因的反式激活功能无关.核转录因子p53也具有类似情况.这种核转录因子由细胞核移位至细胞浆并发挥生物学功能的调控方式是一种新模式,可能具有重要的生物学意义.  相似文献   

12.
Khan SA  Park SW  Huq MD  Wei LN 《Proteomics》2006,6(1):123-130
In a previous report we demonstrated protein kinase C (PKC)-mediated phosphorylation of the ligand-binding domain (LBD) of orphan nuclear receptor TR2. In this report, we provide the evidence of PKC-mediated phosphorylation of the DNA-binding domain (DBD) of TR2. Two PKC target sites were predicted within the DBD, at Ser-170 and Ser-185, but only Ser-185 was confirmed by MS. Phosphorylation of DBD facilitated DNA binding of the TR2 receptor and its recruiting of coactivator p300/CBP-associated factor (P/CAF). Ser-185 was required for DNA binding, whereas both Ser-170 and Ser-185 were necessary for receptor interaction with P/CAF. The P/CAF-interacting domain of TR2 was located in its DBD. A double mutant (Ser-170 and Ser-185) of TR2 significantly lowered the activation of its target gene RARbeta2. This study provides the first evidence for ligand-independent activation of TR2 orphan receptor through PTM at the DBD, which enhanced its DNA-binding ability and interaction with coactivator P/CAF.  相似文献   

13.
The TR2 and TR4 orphan nuclear receptors comprise the DNA-binding core of direct repeat erythroid definitive, a protein complex that binds to direct repeat elements in the embryonic and fetal beta-type globin gene promoters. Silencing of both the embryonic and fetal beta-type globin genes is delayed in definitive erythroid cells of Tr2 and Tr4 null mutant mice, whereas in transgenic mice that express dominant-negative TR4 (dnTR4), human embryonic epsilon-globin is activated in primitive and definitive erythroid cells. In contrast, human fetal gamma-globin is activated by dnTR4 only in definitive, but not in primitive, erythroid cells, implicating TR2/TR4 as a stage-selective repressor. Forced expression of wild-type TR2 and TR4 leads to precocious repression of epsilon-globin, but in contrast to induction of gamma-globin in definitive erythroid cells. These temporally specific, gene-selective alterations in epsilon- and gamma-globin gene expression by gain and loss of TR2/TR4 function provide the first genetic evidence for a role for these nuclear receptors in sequential, gene-autonomous silencing of the epsilon- and gamma-globin genes during development, and suggest that their differential utilization controls stage-specific repression of the human epsilon- and gamma-globin genes.  相似文献   

14.
15.
In this study, we investigated the expression of TR4 in different stages of seminiferous tubules and the relationship between TR4 and androgen in rat testis. We found that TR4 was stage-dependently expressed in rat seminiferous tubules, T withdrawal induced by high doses of testosterone undecanoate and ethane dimethane sulfonate inhibit TR4 expression in rat testis, and testosterone induced TR4 expression in co-cultured primary germ/Sertoli cells. Furthermore, we demonstrated that androgen receptor could enhance TR4-mediated transactivation activity in testis cells in the presence of testosterone. Together, these data indicate that the expression of TR4 in rat testis is stage dependent and androgen inductive, and suggest the important role of orphan receptor TR4 in spermatogenesis.  相似文献   

16.
Apolipoprotein E (apoE) is synthesized in many tissues, and the liver is the primary site from which apoE redistributes cholesterol and other lipids to peripheral tissues. Here we demonstrate that the TR4 orphan nuclear receptor (TR4) can induce apoE expression in HepG2 cells. This TR4-mediated regulation of apoE gene expression was further confirmed in vivo using TR4 knockout mice. Both serum apoE protein and liver apoE mRNA levels were significantly reduced in TR4 knockout mice. Gel shift and luciferase reporter gene assays further demonstrated that TR4 can induce apoE gene expression via a TR4 response element located in the hepatic control region that is 15 kb downstream of the apoE gene. Furthermore our in vivo data from TR4 knockout mice prove that TR4 can also regulate apolipoprotein C-I and C-II gene expression via the TR4 response element within the hepatic control region. Together our data show that loss of TR4 down-regulates expression of the apoE/C-I/C-II gene cluster in liver cells, demonstrating important roles of TR4 in the modulation of lipoprotein metabolism.  相似文献   

17.
18.
19.
The human testicular receptor 2 (TR2) and TR4 orphan receptors are two evolutionarily related proteins belonging to the nuclear receptor superfamily. Numerous TR2 and TR4 variants and homologs have been identified from different species, including vertebrates (e.g. human, murine, rabbit, fish, and amphibian) and invertebrates (e.g. Drosophila, sea urchin, and nematode) since TR2 was initially isolated over a decade ago. Specific tissue distribution, genomic organization, and chromosomal assignment of both orphan receptors have been investigated. In order to reveal the physiological functions played by both TR2 and TR4, upstream modulators of TR2 and TR4 gene expression, their downstream target gene regulation, feedback mechanisms, and differential modulation mediated by the recruitment of other nuclear receptors and coregulators have been investigated. Studies summarized in the present report have provided unexpected insights into the TR2 and TR4 functions in a variety of biological processes. The essential and difficult tasks of identifying orphan receptor ligands, agonist/antagonist assignment, their physiological functions, and mechanisms of action will continue to challenge nuclear receptor researchers in the future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号