首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Tumor necrosis factor alpha (TNF-alpha) induced morphologic changes such as chromatin condensation and cell shrinkage in a feline fibroblastic cell line (CRFK) chronically infected with feline immunodeficiency virus (FIV) but not in uninfected CRFK cells. DNA extracted from TNF-alpha-treated CRFK cells infected with FIV showed a ladder of nucleosomal DNA, indicating that this cytocidal effect by TNF-alpha was due to programmed cell death, or apoptosis. These findings may have implications for understanding the pathogenesis of FIV infection and for the design of specific therapeutic strategies for AIDS in humans as well as cats.  相似文献   

3.
4.
Interleukin 1 (IL-1) alters several potentially pathogenic endothelial cell (EC) functions. The authors report here that recombinant human IL-1 (rIL-1) alpha (0.1 to 10 ng/ml) or IL-1-beta (1 to 100 ng/ml) induce concentration- and time-dependent increases in IL-1-beta mRNA levels in EC derived from adult human saphenous vein. rIL-1 induced IL-1-alpha mRNA only in EC treated concomitantly with cycloheximide (2 micrograms/ml). IL-1-beta mRNA production began within 1 hr of exposure to rIL-1, peaked after 24 hr, and declined thereafter. Actinomycin D prevented the appearance of IL-1 mRNA in rIL-1-treated EC. rIL-1 also induced the release of biologically active IL-1 from EC, which was inhibited by cycloheximide (1 microgram/ml). When compared on the basis of their activity in the thymocyte costimulation assay, rIL-1-alpha and rIL-1-beta were equipotent as inducers of IL-1 production by EC. EC stimulated with rIL-1 produced prostaglandin E2, which inhibits IL-1 production by other cell types and also decreases the responsiveness of thymocytes to IL-1. When EC were exposed to rIL-1 in the presence of indomethacin (1 microgram/ml), which blocked prostaglandin E2 production, greater amounts of rIL-1-induced IL-1 release were detected, although the inhibitor did not affect IL-1-beta mRNA levels. IL-1-induced IL-1 production was unlikely to be caused by endotoxin contamination of tissue culture media or IL-1 preparations, because the lipopolysaccharide (LPS) antagonist polymyxin B (10 micrograms/ml) blocked LPS-induced IL-1 production by EC but did not affect IL-1 release in response to rIL-1-beta (100 ng/ml). The IL-1-inducing property of rIL-1-beta was heat-labile, whereas heated LPS stimulated EC IL-1 production. The source of IL-1 in our cultures was not monocyte/macrophages, as treatment of EC with monoclonal antibody to the monocyte antigen Mo2 under conditions that lysed adherent peripheral blood monocytes did not affect production of IL-1 by EC in response to LPS (1 microgram/ml) or rIL-1-beta (100 ng/ml). IL-1 elicits a coordinated program of altered endothelial function that increases adhesiveness for leukocytes and coagulability. IL-1-induced IL-1 gene expression in human adult EC could thus provide a positive feedback mechanism in the pathogenesis of vascular disease including atherosclerosis, vasculitis, and allograft rejection.  相似文献   

5.
Naldini A  Pucci A  Carraro F 《Cytokine》2001,13(6):334-341
Hypoxia modulates the expression of inflammatory mediators in a variety of cell types. Since interleukin (IL-)1 receptor antagonist (Ra) is a cytokine widely associated with an inflammatory state and is expressed by activated mononuclear cells, we investigated whether hypoxia induces IL-1Ra expression in human peripheral blood mononuclear cells (PBMC) activated by phytohaemagglutinin (PHA). RNase protection assay, conducted on PHA-activated PBMC cultured under hypoxic conditions (2% O(2)) for 16-40 h, revealed that hypoxia enhances IL-1Ra mRNA expression. Further, IL-1Ra release was significantly affected by hypoxia, as determined by ELISA. Concomitantly, hypoxia enhanced, even though at a lesser extent, both IL-1alpha and IL-1beta mRNA expression and release, as determined by RPA and ELISA. However, at 40 h of treatment, hypoxia did not affect cell viability and DNA fragmentation, but caused an inhibition of the proliferation index after PHA stimulation, obtained by MTT assay. These results suggest that activated mononuclear cells tend to respond to hypoxic stress by modulating the expression of IL-1Ra and IL-1-related molecules and their release in the surrounding microenvironment.  相似文献   

6.
7.
The macrophage-derived product, interleukin 1 (IL 1) is thought to play an important regulatory role in the proliferation of T lymphocytes; however, its mechanism of action is unknown. We describe in this report a variant subline of EL4 thymoma cells (EL4-6.1) that displays a high degree of responsiveness to IL 1. We show that recombinant IL 1 can induce both the secretion of interleukin 2 (IL 2) and the expression of IL 2 receptors (IL 2-R) by these cells. EL4-6.1 cells do not constitutively secrete IL 2, nor do they express IL 2-R; but when cultured in the presence of recombinant IL 1, they secrete detectable amounts of IL 2 (5 to 15 U/ml). In the presence of either suboptimal levels of phorbol ester (PMA) or Ionomycin, the addition of IL 1 resulted in up to an 80-fold enhancement in the amount of IL 2 secreted. Stimulation with IL 1 alone or in combination with Ionomycin was unable to induce detectable IL 2-R expression by EL4-6.1 cells. However, in the presence of suboptimal concentrations of PMA, IL 1 induced expression of about 3000 high affinity (dissociation constant, Kd of 31 pM) and 50,000 low affinity (Kd of 2800 pM) IL 2-R. These IL 2-R were functional, based on their ability to rapidly internalize IL 2. This model system will allow a detailed analysis of the mechanisms involved in the regulation of the immune response by IL 1 and IL 2.  相似文献   

8.
High resolution two-dimensional gel electrophoresis was used to analyze the signal transduction pathways of tumor necrosis factor (TNF-alpha) and interleukin 1 (IL-1 alpha and -beta) in human fibroblasts. Approximately 450 discrete radioactive spots were electrophoretically resolved from cytosolic extracts of cells prelabeled with 32P. At least 63 of these polypeptides exhibited significant and concordant phosphorylation or dephosphorylation in response to TNF or IL-1, despite the fact that different receptors are involved. Most of these changes concerned serine/threonine residues although enhanced tyrosine phosphorylation of several polypeptides was also observed. Phosphorylation patterns induced by a number of other agonists were compared with the patterns induced by IL-1 and TNF. These included activators of protein kinases C and A, bradykinin (a stimulator of inositol phospholipid hydrolysis), epidermal growth factor, heatshock, and mellitin (an activator of phospholipase A2). Although each of these agonists induced changes resulting in a distinct pattern of protein phosphorylation, none of these patterns had significant homology with that induced by IL-1 and TNF. Other assays were performed to verify the involvement of specific kinases. Collectively, these data indicate that IL-1 and TNF activate multiple protein kinases viz. a kinase(s) which activates microtubule-associated protein 2 (MAP-2) kinase, a kinase that phosphorylates the cap-binding protein, and a possibly novel serine/threonine protein kinase.  相似文献   

9.
The effect of human recombinant tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) on interleukin 2 receptor (IL-2R) expression on YT cells was examined. IL-2R expression was assessed by flow cytometric analysis with a monoclonal antibody to IL-2R (anti-TAC). TNF-alpha, like IL-1 beta, induced increased levels of IL-2R expression on YT cells with similar kinetics of induction. Maximum induction occurred at 20 to 30 hr. On a molar basis. TNF was less active than IL-1 beta. RNA isolated from TNF-alpha- or IL-1 beta-treated YT cells contained increased levels of IL-2R-specific mRNA as indicated by slot blot analysis by using an IL-2R-specific mRNA probe. Kinetic and IL-1 beta mRNA expression studies indicated that the TNF effect was a direct one. Because IL-2R expression is known to be associated with lymphocyte activation, the present results suggest that TNF-alpha may play a role in the regulation of immune responses.  相似文献   

10.
11.
12.
13.
Tumor necrosis factor alpha (TNF-alpha) is a key mediator of host immune and inflammatory responses and inhibits herpesvirus replication by cytolytic and noncytolytic mechanisms. TNF-alpha effects are primarily mediated through the major TNF-alpha receptor, TNF-R1, which is constitutively expressed in most cell types. Here we show that the Epstein-Barr virus (EBV) immediate-early protein BZLF1 prevents TNF-alpha activation of target genes and TNF-alpha-induced cell death. These effects are mediated by down-regulation of the promoter for TNF-R1. Additionally, we demonstrate that expression of TNF-R1 is downregulated during the EBV lytic replication cycle. Thus, EBV has developed a novel mechanism for evading TNF-alpha antiviral effects during lytic reactivation or primary infection.  相似文献   

14.
This study demonstrates synergistic effects on Tac expression by interleukin 1 (IL-1) or tumor necrosis factor alpha (TNF alpha) in combination with the adenylate cyclase stimulator, forskolin (FK), as well as by IL-1 with TNF alpha in the human NK-like leukemic cell line YT. The maximal expression level (greater than 80% positive cells) obtained with FK plus IL-1 or FK plus TNF alpha could not be obtained by increasing the concentration of either agent alone. Furthermore, we demonstrate that Tac protein expression is correlated with increased steady-state Tac mRNA levels. Other agents that increase intracellular cAMP, such as prostaglandin E (PGE) or isobutyl-methylxanthine (IBMX), also synergized with IL-1 or TNF alpha (but not with FK). The findings suggest that cAMP plays a role in regulating Tac expression in YT cells, and that IL-1, TNF, and FK use distinct signal transduction mechanisms, all resulting in the same end point effect, namely, induction of Tac mRNA and cell surface protein expression.  相似文献   

15.
Stimulation of tumor necrosis factor receptor 1 (TNF-R1) triggers both caspase-dependent and caspase-independent signaling activities. The caspase-dependent signaling pathway induces apoptotic cell death in susceptible cells, whereas the caspase-independent signaling cascade leads to activation of nuclear factor kappa B and induces antiapoptotic signaling activities. Stimulation of nuclear factor kappa B via TNF-R1 is known to activate human immunodeficiency virus (HIV) replication in infected cells. Here we show that the broad range caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (ZVAD) activates HIV replication in the chronically infected T-cell line ACH-2. Virus activation was caused by a sensitization of TNF-R1 toward endogenously produced tumor necrosis factor alpha (TNF-alpha). Neutralizing anti-TNF-alpha antibodies completely abolished the virus-inducing activity of ZVAD. Treatment of cells with TNF-alpha in the presence of ZVAD caused increased expression of TNF-alpha and induced enhanced virus replication. Activation of CD95, another member of the TNF receptor family, similarly triggered HIV replication, which was further enhanced in the presence of ZVAD. Our data show that caspase inhibitors sensitize both CD95 and TNF-R1 to mediate activation of HIV in latently infected cells. Activation of HIV replication in latent virus reservoirs is currently discussed as a therapeutic strategy to achieve eradication of HIV in patients treated with antiretroviral therapy. Our results point to a novel role for caspase inhibitors as activators of virus replication in vivo.  相似文献   

16.
Treatment of mesangial cells with recombinant human interleukin 1 beta (IL-1 beta) or recombinant human tumor necrosis factor alpha (TNF alpha) dose-dependently increased cGMP formation. Both IL-1 beta and TNF alpha-stimulated formation of cGMP occurred after a initial lag period of 4 to 8 hours. Treatment of cells with actinomycin D, cycloheximide or dexamethason completely abolished cytokine-induced cGMP formation. Furthermore, the guanylate cyclase inhibitor Methylene blue completely blocked IL-1 beta- and TNF alpha-stimulated cGMP generation. NG-mono-methyl-L-arginine attenuated IL-1 beta- and TNF alpha-induced cGMP production, an effect that was reversed by L-arginine.  相似文献   

17.
The antimalignant cell activity of tumor necrosis factor (TNF) in many cell types can be enhanced by lithium chloride (LiCl). This study shows the in vitro effect of LiCl on the TNF-induced or interleukin 1 (IL-1)-induced expression of IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-3, IL-2, and the IL-2 receptor-alpha (IL-2R alpha). The levels of IL-6 and GM-CSF in the medium of TNF-treated L929 fibrosarcoma cells were increased by cotreatment with LiCl. In contrast, enhancement of IL-6 production by dibutyryl cyclic AMP or cycloheximide was not affected by LiCl. The production of IL-6 and GM-CSF was not correlated with sensitivity to TNF-mediated cell killing. IL-1 by itself had no measurable effects on L929 cells. However, LiCl potentiated the IL-1-induced synthesis of IL-6, GM-CSF, IL-3, and IL-2 in PC60 murine T-cell hybridoma cells. TNF alone induced only GM-CSF production in these cells, but in the presence of LiCl, increased amounts of GM-CSF as well as small amounts of IL-2 and IL-6 could be detected. It is also shown that in these PC60 cells the expression of the IL-2R alpha was induced by TNF + LiCl treatment but not by TNF alone. IL-2R alpha expression was likewise considerably enhanced by IL-1 + LiCl treatment, as compared with treatment with IL-1 alone. The effects of LiCl on the TNF-induced and the IL-1-induced gene expression seem to be independent of the protein kinase A and C pathways. These results show that LiCl can modulate both TNF-mediated cytotoxicity and TNF-induced and IL-1-induced cytokine expression, suggesting that Li+ acts early in the TNF-signaling pathway, but at a step shared with the IL-1-signaling pathway.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号