首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Early activation of p160ROCK by pressure overload in rat heart   总被引:1,自引:0,他引:1  
We investigated the mechanisms underlying regulation of contraction with measurements of isometric force and intracellular Ca2+ concentration ([Ca2+]i) in NIH 3T3 fibroblast reconstituted into fibers with the use of a collagen matrix. Treatment with the major phospholipids, neurotransmitters, and growth factors had little effect on baseline isometric force. However, U-46619, a thromboxane A2 (TxA2) analog, increased force and [Ca2+]i; EC50 values were 11.0 and 10.0 nM, respectively. The time courses were similar to those induced by calf serum (CS), and the maximal force was 65% of a CS-mediated contraction. The selective TxA2 receptor antagonist SQ-29548 abolished the U-46619-induced responses. CS-induced contractions are dependent on an intracellular Ca2+ store function; however, the U-46619 response depended not only on intracellular Ca2+ stores, but also on Ca2+ influx from the extracellular medium. Inhibition of Rho kinase suppressed U-46619- and CS-induced responses; in contrast, inhibition of C kinase (PKC) reduced only the U-46619 response. Moreover, addition of U-46619 to a CS contracture enhanced force and [Ca2+]i responses. These results indicate that U-46619-induced responses involve PKC and Rho kinase pathways, in contrast to activation by CS. Thus TxA2 may have a role in not only the initial step of wound repair as an activator of blood coagulation, but also in fibroblast contractility in later stages. collagen matrix; signal transduction; wound repair  相似文献   

2.
KCl has long been used as a convenient stimulus to bypass G protein-coupled receptors (GPCR) and activate smooth muscle by a highly reproducible and relatively "simple" mechanism involving activation of voltage-operated Ca2+ channels that leads to increases in cytosolic free Ca2+ ([Ca2+]i), Ca2+-calmodulin-dependent myosin light chain (MLC) kinase activation, MLC phosphorylation and contraction. This KCl-induced stimulus-response coupling mechanism is a standard tool-set used in comparative studies to explore more complex mechanisms generated by activation of GPCRs. One area where this approach has been especially productive is in studies designed to understand Ca2+ sensitization, the relationship between [Ca2+]i and force produced by GPCR agonists. Studies done in the late 1980s demonstrated that a unique relationship between stimulus-induced [Ca2+]i and force does not exist: for a given increase in [Ca2+]i, GPCR activation can produce greater force than KCl, and relaxant agents can produce the opposite effect to cause Ca2+ desensitization. Such changes in Ca2+ sensitivity are now known to involve multiple cell signaling strategies, including translocation of proteins from cytosol to plasma membrane, and activation of enzymes, including RhoA kinase and protein kinase C. However, recent studies show that KCl can also cause Ca2+ sensitization involving translocation and activation of RhoA kinase. Rather than complicating the Ca2+ sensitivity story, this surprising finding is already providing novel insights into mechanisms regulating Ca2+ sensitivity of smooth muscle contraction. KCl as a "simple" stimulus promises to remain a standard tool for smooth muscle cell physiologists, whose focus is to understand mechanisms regulating Ca2+ sensitivity. K+ depolarization; cell signaling; signal transduction; contraction  相似文献   

3.
We investigatedwhether Rho activation is required for Ca2+-insensitivepaxillin phosphorylation, myosin light chain (MLC) phosphorylation, andcontraction in tracheal muscle. Tyrosine-phosphorylated proteins havebeen implicated in the Ca2+-insensitive contractileactivation of smooth muscle tissues. The contractile activation oftracheal smooth muscle increases tyrosine phosphorylation of thecytoskeletal proteins paxillin and focal adhesion kinase. Paxillin isimplicated in integrin-mediated signal transduction pathways thatregulate cytoskeletal organization and cell motility. In fibroblastsand other nonmuscle cells, paxillin tyrosine phosphorylation depends onthe activation of Rho and is inhibited by cytochalasin, an inhibitor ofactin polymerization. In permeabilized muscle strips, we found that AChinduced Ca2+-insensitive contraction, MLC phosphorylation,and paxillin tyrosine phosphorylation. Ca2+-insensitivecontraction and MLC phosphorylation induced by ACh were inhibited by C3transferase, an inhibitor of Rho activation; however, C3 transferasedid not inhibit paxillin tyrosine phosphorylation. Ca2+-insensitive paxillin tyrosine phosphorylation was alsonot inhibited by the Rho kinase inhibitor Y-27632, by cytochalasin D,or by the inhibition of MLC phosphorylation. We conclude that, intracheal smooth muscle, Rho mediates Ca2+-insensitivecontraction and MLC phosphorylation but that Rho is not required forCa2+-insensitive paxillin tyrosine phosphorylation.Paxillin phosphorylation also does not require actomyosin activation,nor is it inhibited by the actin filament capping agent cytochalasin D.

  相似文献   

4.
We analyzed the signaling pathways initiated by endothelin receptors ETA and ETB in intestinal circular and longitudinal smooth muscle cells. The response to endothelin-1 (ET-1) consisted of two phases in both cell types. The initial, transient phase of contraction and phosphorylation of 20-kDa myosin light chain (MLC20) was mediated additively by ETA and ETB receptors and initiated by Gq-, Ca2+/calmodulin-dependent activation of MLC kinase. In contrast, the sustained phase was mediated selectively by ETA receptors via a pathway involving sequential activation of G13, RhoA, and Rho kinase, resulting in phosphorylation of MYPT1 at Thr696 and phosphorylation of MLC20. Although PKC was activated, CPI-17 was not phosphorylated and hence did not contribute to inhibition of MLC phosphatase. The absence of CPI-17 phosphorylation by PKC reflected active dephosphorylation of CPI-17 by protein phosphatase 2A (PP2A). PP2A was activated via a pathway involving ETB-dependent stimulation of p38 MAPK activity. CPI-17 phosphorylation was unmasked in the presence of the ETB antagonist BQ-788, but not the ETA antagonist BQ-123, and in the presence of a low concentration of okadaic acid, which selectively inactivates PP2A. The resultant phosphorylation of CPI-17 was blocked by bisindolylmaleimide, providing direct confirmation that it was PKC dependent. We conclude that the two phases of the intestinal smooth muscle response to ET-1 involve distinct receptors, G proteins, and signaling pathways. The sustained response is mediated via selective ETA-dependent phosphorylation of MYPT1. In contrast, ETB initiates an inhibitory pathway involving p38 MAPK-dependent activation of PP2A that causes dephosphorylation of CPI-17. endothelin receptor type A; endothelin receptor type B; myosin phosphatase targeting subunit  相似文献   

5.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

6.
Ca+/calmodulin-dependent protein kinase II(CaM kinase II) has been implicated in the regulation of smooth musclecontractility. The goals of this study were to determine: 1) towhat extent CaM kinase II is activated by contractile stimuli in intactarterial smooth muscle, and 2) the effect of a CaM kinase IIinhibitor (KN-93) on CaM kinase II activation, phosphorylation ofmyosin regulatory light chains (MLC20), and force. Bothhistamine (1 µM) and KCl depolarization activated CaM kinase II witha time course preceding maximal force development, and suprabasal CaM kinase II activation was sustained during tonic contractions. CaMkinase II activation was inhibited by KN-93 pretreatment(IC50 ~1 µM). KN-93 inhibited histamine-induced tonicforce maintenance, whereas early force development andMLC20 phosphorylation responses during the entire timecourse were unaffected. Both force development and maintenance inresponse to KCl were inhibited by KN-93. Rapid increases in KCl-inducedMLC20 phosphorylation were also inhibited by KN-93, whereassteady-state MLC20 phosphorylation responses wereunaffected. In contrast, phorbol 12,13-dibutyrate (PDBu) did notactivate CaM kinase II and PDBu-stimulated force development wasunaffected by KN-93. Thus KN-93 appears to target a step(s) essentialfor force maintenance in response to physiological stimuli, suggestinga role for CaM kinase II in regulating tonic contractile responses inarterial smooth muscle. Pharmacological activation of protein kinase Cbypasses the KN-93 sensitive step.

  相似文献   

7.
Protein kinase C-potentiated phosphatase inhibitor of 17 kDa (CPI-17) mediates some agonist-induced smooth muscle contraction by suppressing the myosin phosphatase in a phosphorylation-dependent manner. The physiologically relevant kinases that phosphorylate CPI-17 remain to be identified. Several previous studies have shown that some agonist-induced CPI-17 phosphorylation in smooth muscle tissues was attenuated by the Rho kinase (ROCK) inhibitor Y-27632, suggesting that ROCK is involved in agonist-induced CPI-17 phosphorylation. However, Y-27632 has recently been found to inhibit protein kinase C (PKC)-, a well-recognized CPI-17 kinase. Thus the role of ROCK in agonist-induced CPI-17 phosphorylation remains uncertain. The present study was designed to address this important issue. We selectively activated the RhoA pathway using inducible adenovirus-mediated expression of a constitutively active mutant RhoA (V14RhoA) in primary cultured rabbit aortic vascular smooth muscle cells (VSMCs). V14RhoA caused expression level-dependent CPI-17 phosphorylation at Thr38 as well as myosin phosphatase phosphorylation at Thr853. Importantly, we have shown that V14RhoA-induced CPI-17 phosphorylation was not affected by the PKC inhibitor GF109203X but was abolished by Y-27632, suggesting that ROCK but not PKC was involved. Furthermore, we have shown that the contractile agonists thrombin and U-46619 induced CPI-17 phosphorylation in VSMCs. Similarly to V14RhoA-induced CPI-17 phosphorylation, thrombin-induced CPI-17 phosphorylation was not affected by inhibition of PKC with GF109203X, but it was blocked by inhibition of RhoA with adenovirus-mediated expression of exoenzyme C3 as well as by Y-27632. Taken together, our present data provide the first clear evidence indicating that ROCK is responsible for thrombin- and U-46619-induced CPI-17 phosphorylation in primary cultured VSMCs. protein kinase C; signal transduction; adenovirus  相似文献   

8.
Rho-kinase-mediated Ca2+-independent contraction in rat embryo fibroblasts   总被引:5,自引:0,他引:5  
Thus far, determining the relative contribution of Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) and Ca2+-independent Rho-kinase pathways to myosin II activation and contraction has been difficult. In this study, we characterize the role of Rho-kinase in a rat embryo fibroblast cell line (REF-52), which contains no detectable MLCK. No endogenous MLCK could be detected in REF-52 cells by either Western or Northern blot analysis. In the presence or absence of Ca2+, thrombin or lysophosphatidic acid (LPA) increased RhoA activity and Rhokinase activity, correlating with isometric tension development and myosin II regulatory light chain (RLC) phosphorylation. Resting tension is associated with a basal phosphorylation of 0.31 ± 0.02 mol PO4/mol RLC, whereas upon LPA or thrombin treatment myosin II RLC phosphorylation increases to 1.08 ± 0.05 and 0.82 ± 0.05 mol PO4/mol RLC, respectively, within 2.5 min. Ca2+ chelation has minimal effect on the kinetics and magnitude of isometric tension development and RLC phosphorylation. Treatment of REF-52 cells with the Rho-kinase-specific inhibitor Y-27632 abolished thrombin- and LPA-stimulated contraction and RLC phosphorylation. These results suggest that Rho-kinase is sufficient to activate myosin II motor activity and contraction in REF-52 cells. myosin light chain kinase; RhoA; myosin II regulatory light chain phosphorylation  相似文献   

9.
We examined expression of sphingosine 1-phosphate (S1P) receptors and sphingosine kinase (SPK) in gastric smooth muscle cells and characterized signaling pathways mediating S1P-induced 20-kDa myosin light chain (MLC20) phosphorylation and contraction. RT-PCR demonstrated expression of SPK1 and SPK2 and S1P1 and S1P2 receptors. S1P activated Gq, G13, and all Gi isoforms and stimulated PLC-1, PLC-3, and Rho kinase activities. PLC- activity was partially inhibited by pertussis toxin (PTX), G or Gq antibody, PLC-1 or PLC-3 antibody, and by expression of Gq or Gi minigene, and was abolished by a combination of antibodies or minigenes. S1P-stimulated Rho kinase activity was partially inhibited by expression of G13 or Gq minigene and abolished by expression of both. S1P stimulated Ca2+ release that was inhibited by U-73122 and heparin and induced concentration-dependent contraction of smooth muscle cells (EC50 1 nM). Initial contraction and MLC20 phosphorylation were abolished by U-73122 and MLC kinase (MLCK) inhibitor ML-9. Initial contraction was also partially inhibited by PTX and Gq or G antibody and abolished by a combination of both antibodies. In contrast, sustained contraction and MLC20 phosphorylation were partially inhibited by a PKC or Rho kinase inhibitor (bisindolylmaleimide and Y-27632) and abolished by a combination of both inhibitors but not affected by U-73122 or ML-9. These results indicate that S1P induces 1) initial contraction mediated by S1P2 and S1P1 involving concurrent activation of PLC-1 and PLC-3 via Gq and Gi, respectively, resulting in inositol 1,4,5-trisphosphate-dependent Ca2+ release and MLCK-mediated MLC20 phosphorylation, and 2) sustained contraction exclusively mediated by S1P2 involving activation of RhoA via Gq and G13, resulting in Rho kinase- and PKC-dependent MLC20 phosphorylation. muscle contraction; signal transduction  相似文献   

10.
This study was undertaken to demonstrate the role of the RhoA/Rho kinase pathway in endothelin-1 (ET-1)-induced contraction of the rabbit basilar artery. Isometric tension and Western blot were used to examine ET-1-induced contraction and RhoA activation. The upstream effect on ET-1-induced RhoA activity was determined by using ET(A) and ET(B) receptor antagonists, protein kinase C (PKC), tyrosine kinase, and phosphatidylinositol-3 kinase inhibitors. The downstream effect of ET-1-induced contraction and RhoA activity was studied in the presence of the Rho kinase inhibitor Y-27632. The effect of Rho kinase inhibitor on ET-1-induced myosin light chain (MLC) phosphorylation was investigated by using urea-glycerol-PAGE immunoblotting. We found 1) ET-1 increased RhoA activity (membrane binding RhoA) in a concentration-dependent manner; 2) ET(A), but not ET(B), receptor antagonist abolished the effect of ET-1 on RhoA activation; 3) phosphodylinositol-3 kinase inhibitor, but not PKC and tyrosine kinase inhibitors, reduced ET-1-induced RhoA activation; 4) Rho kinase inhibitor Y-27632 (10 microM) inhibited ET-1-induced contraction; and 5) ET-1 increased the level of MLC phosphorylation. Rho kinase inhibitor Y-27632 reduced the effect of ET-1 on MLC phosphorylation. This study demonstrated that RhoA/Rho kinase activation is involved in ET-1-induced contraction in the rabbit basilar artery. Phosphodylinositol-3 kinase and MLC might be the upstream and downstream factors of RhoA activation.  相似文献   

11.
Myosin-based contractility plays important roles in the regulation of epithelial functions, particularly paracellular permeability. However, the triggering factors and the signaling pathways that control epithelial myosin light chain (MLC) phosphorylation have not been elucidated. Herein we show that plasma membrane depolarization provoked by distinct means, including high extracellular K+, the lipophilic cation tetraphenylphosphonium, or the ionophore nystatin, induced strong diphosphorylation of MLC in kidney epithelial cells. In sharp contrast to smooth muscle, depolarization of epithelial cells did not provoke a Ca2+ signal, and removal of external Ca2+ promoted rather than inhibited MLC phosphorylation. Moreover, elevation of intracellular Ca2+ did not induce significant MLC phosphorylation, and the myosin light chain kinase (MLCK) inhibitor ML-7 did not prevent the depolarization-induced MLC response, suggesting that MLCK is not a regulated element in this process. Instead, the Rho-Rho kinase (ROK) pathway is the key mediator because 1) depolarization stimulated Rho and induced its peripheral translocation, 2) inhibition of Rho by Clostridium difficile toxin B or C3 transferase abolished MLC phosphorylation, and 3) the ROK inhibitor Y-27632 suppressed the effect. Importantly, physiological depolarizing stimuli were able to activate the same pathway: L-alanine, the substrate of the electrogenic Na+-alanine cotransporter, stimulated Rho and induced Y-27632-sensitive MLC phosphorylation in a Na+-dependent manner. Together, our results define a novel mode of the regulation of MLC phosphorylation in epithelial cells, which is depolarization triggered and Rho-ROK-mediated but Ca2+ signal independent. This pathway may be a central mechanism whereby electrogenic transmembrane transport processes control myosin phosphorylation and thereby regulate paracellular transport. membrane potential; Na+-alanine cotransport; epithelium; phosphatidylinositol 3-kinase; LLC-PK1 cells  相似文献   

12.
Previous studies have shown that cGMP-dependent protein kinase (PKG) act on several targets in the contractile pathway to reduce intracellular Ca2+ and/or augment RhoA-regulated myosin light chain phosphatase (MLCP) activity and cause muscle relaxation. Recent studies have identified a novel protein M-RIP that associates with MYPT1, the regulatory subunit of MLCP. Herein, we examine whether PKG enhance MLCP activity downstream of Ca2+ and RhoA via phosphorylation of M-RIP in gastric smooth muscle cells. Treatment of permeabilized muscle cells with 10 μM Ca2+ caused an increase in MLC20 phosphorylation and muscle contraction, but had no effect on Rho kinase activity. Activators of PKG (GSNO or cGMP) decreased MLC20 phosphorylation and contraction in response to 10 μM Ca2+, implying existence of inhibitory mechanism independent of Ca2+ and RhoA. The effect of PKG on Ca2+-induced MLC20 phosphorylation was attenuated by M-RIP siRNA. Both GSNO and 8-pCPT-cGMP induced phosphorylation of M-RIP; phosphorylation was accompanied by an increase in the association of M-RIP with MYPT1 and MLCP activity. Taken together, these results provide evidence that PKG induces phosphorylation of M-RIP and enhances its association with MYPT1 to augment MLCP activity and MLC20 dephosphorylation and inhibits muscle contraction, downstream of Ca2+- or RhoA-dependent pathways.  相似文献   

13.
Conjunctival goblet cells are the primarysource of mucins in the mucous layer, the innermost layer of the tearfilm. Conjunctival goblet cell mucin secretion is under neural controlbecause exogenous addition of parasympathetic agonists stimulatesgoblet cell secretion. To elucidate the intracellular signal pathwaysused by cholinergic agonists to stimulate goblet cell mucin secretion,we determined whether p42/p44 mitogen-activated protein kinase (MAPK)is activated during cholinergic agonist-stimulated mucin secretion. Ratconjunctiva was removed, preincubated with or without antagonists, andstimulated with the cholinergic agonist carbachol (104M). Carbachol statistically significantly stimulated thephosphorylation of MAPK in a time- and concentration-dependent manner.U-0126, an inhibitor of MAPK activation, completely inhibited both the activation of MAPK and goblet cell secretion stimulated by carbachol. The M1 muscarinic antagonist pirenzepine, theM2 muscarinic antagonist gallamine, and theM1/M3 muscarinic receptor antagonistN-(3-chloropropyl)-4-piperidinyl diphenylacetate (4-DAMP)also inhibited carbachol-stimulated MAPK activation. Increasing theintracellular Ca2+ concentration with a Ca2+ionophore increased MAPK activation, and chelation of extracellular Ca2+ inhibited carbachol-stimulated activation. Carbacholalso increased tyrosine phosphorylation of Pyk2, p60Src, and theepidermal growth factor receptor (EGFR). The Src inhibitor PP1 and theEGFR inhibitor AG-1478 completely inhibited carbachol-stimulated MAPKactivation. AG-1478 also inhibited goblet cell secretion. We concludethat carbachol transactivates the EGFR to activate MAPK, leading to conjunctival goblet cell secretion. In addition, carbachol also activates Pyk2 and p60Src that could play a role in the transactivation of the EGFR.

  相似文献   

14.
Contractile stimuli can sensitize myosin to Ca2+ by activating RhoA kinase (ROK) and PKC that inhibit myosin light chain phosphatase (MLCP) activity. Relaxant stimuli, acting through PKA and PKG (cyclic nucleotide-dependent protein kinases), and pretreatment with contractile agents such as phenylephrine (PE), can desensitize myosin to Ca2+. It is unknown precisely how these stimuli cause Ca2+ desensitization. To test the hypothesis that PKA, PKG, and PE pretreatment signaling systems converge to cause relaxation by inhibition of ROK in intact, isolated tissues, we examined the effects of forskolin (FSK; PKA activation), 8-bromo-cGMP (8br-cGMP; PKG activation), and PE pretreatment on KCl-induced force maintenance in rabbit arteries, a response nearly completely dependent on ROK activation. PE pretreatment and agents activating PKA and PKG caused Ca2+ desensitization by inhibiting KCl-induced tonic force and MLC phosphorylation without inhibiting intracellular [Ca2+]. At pCa 5 in -escin-permeabilized muscle, FSK and 8b-cGMP accelerated the relaxation rate when tissues were returned to pCa 9, suggesting that both agents can elevate MLCP activity. However, a component of the Ca2+ desensitization attributed to PKG activation in intact tissues appeared to involve a MLC phosphorylation-independent component. Inhibition of KCl-induced tonic force by the ROK inhibitor, Y-27632, and by PE pretreatment, were synergistically potentiated by 8b-cGMP, but not FSK. FSK and PE pretreatment, but not 8b-cGMP, inhibited the KCl-induced increase in site-specific myosin phosphatase target protein-1 phosphorylation at Thr853. These data support the hypothesis that PKA and PE pretreatment converge on a common Ca2+-desensitization pathway, but that PKG can act by a mechanism different from that activated by PKA and PE pretreatment. vascular smooth muscle; Ca2+ sensitization; RhoA kinase; signal transduction  相似文献   

15.
In cultured porcine aortic smooth muscle cells,sphingosylphosphorylcholine (SPC), ATP, or bradykinin (BK) induced arapid dose-dependent increase in the cytosolicCa2+ concentration([Ca2+]i)and also stimulated inositol 1,4,5-trisphosphate(IP3) generation. Pretreatmentof cells with pertussis toxin blocked the SPC-induced IP3 generation and[Ca2+]iincrease but had no effect on the action of ATP or BK. In addition, SPCstimulated the mitogen-activated protein kinase (MAPK) and increasedDNA synthesis, whereas neither ATP nor BK produced such effects. Boththe SPC-induced MAPK activation and DNA synthesis were pertussis toxinsensitive. SPC-induced MAPK activation was blocked by treatment ofcells with the phospholipase C inhibitor, U-73122, or the intracellularCa2+-ATPase inhibitor,thapsigargin, but not by removal of extracellular Ca2+. Lysophosphatidic acidinduced cellular responses similar to SPC in a pertussistoxin-sensitive manner in terms of[Ca2+]iincrease, IP3 generation, MAPKactivation, and DNA synthesis. Platelet-derived growth factor (PDGF)also induced a[Ca2+]iincrease, MAPK activation, and DNA synthesis in the same cells; however, the PDGF-induced MAPK activation was not sensitive to pertussis toxin and changes in[Ca2+]i.SPC-induced MAPK activation was inhibited by pretreatment of cells withstaurosporine, W-7, or calmidazolium. Our results suggest that, inporcine aortic smooth muscle cells, MAPK is not activated by theincrease in[Ca2+]iunless a pertussis toxin-sensitive G protein is simultaneously stimulated, indicating the role ofCa2+ in pertussis toxin-sensitiveG protein-mediated MAPK activation.

  相似文献   

16.
Activation of PLC-delta1 by Gi/o-coupled receptor agonists   总被引:1,自引:0,他引:1  
The mechanism of phospholipase (PLC)- activation by G protein-coupled receptor agonists was examined in rabbit gastric smooth muscle. Ca2+ stimulated an eightfold increase in PLC-1 activity in permeabilized muscle cells. Treatment of dispersed or cultured muscle cells with three Gi/o-coupled receptor agonists (somatostatin, -opioid agonist [D-Pen2,D-Pen5]enkephalin, and A1 agonist cyclopentyl adenosine) caused delayed increase in phosphoinositide (PI) hydrolysis (8- to 10-fold) that was strongly inhibited by overexpression of dominant-negative PLC-1(E341R/D343R; 65–76%) or constitutively active RhoA(G14V). The response coincided with capacitative Ca2+ influx and was not observed in the absence of extracellular Ca2+, but was partly inhibited by nifedipine (16–30%) and strongly inhibited by SKF-96365, a blocker of store-operated Ca2+ channels. Treatment of the cells with a Gq/13-coupled receptor agonist, CCK-8, caused only transient, PLC-1-mediated PI hydrolysis. Unlike Gi/o-coupled receptor agonists, CCK-8 activated RhoA and stimulated RhoA:PLC-1 association. Inhibition of RhoA activity with C3 exoenzyme or by overexpression of dominant-negative RhoA(T19N) or G13 minigene unmasked a delayed increase in PI hydrolysis that was strongly inhibited by coexpression of PLC-1(E341R/D343R) or by SKF-96365. Agonist-independent capacitative Ca2+ influx induced by thapsigargin stimulated PI hydrolysis (8-fold), which was partly inhibited by nifedipine (25%) and strongly inhibited by SKF-96365 (75%) and in cells expressing PLC-1(E341R/D343R). Agonist-independent Ca2+ release or Ca2+ influx via voltage-gated Ca2+ channels stimulated only moderate PI hydrolysis (2- to 3-fold), which was abolished by PLC-1 antibody or nifedipine. We conclude that PLC-1 is activated by Gi/o-coupled receptor agonists that do not activate RhoA. The activation is preferentially mediated by Ca2+ influx via store-operated Ca2+ channels. phospholipase C; G protein  相似文献   

17.
Stimulation ofsingle Ehrlich ascites tumor cells with agonists (bradykinin, thrombin)and with arachidonic acid (AA) induces increases in the freeintracellular Ca2+ concentration([Ca2+]i)in the presence and absence of extracellularCa2+, measured using theCa2+-sensitive probe fura 2. Sequential stimulation with two agonists elicits sequential increasesin[Ca2+]i,unlike addition of the same agonist twice. Bradykinin and thrombin haveadditive effects on[Ca2+]iin Ca2+-free medium. Thephosphoinositidase C inhibitor U-73122 inhibits the agonist-inducedincreases in[Ca2+]i,whereas ryanodine has no effect. Pretreatment of cells in Ca2+-free medium with thapsigarginabolishes the bradykinin-induced increase in[Ca2+]ibut not the response to thrombin. The AA-induced response is notinhibited by U-73122 and cannot be mimicked by the inactive structuralanalog trifluoromethylarachidonyl ketone. Pretreatment of the cellswith 50 µM AA (but not with 10 µM AA) abolishes the agonist-inducedincrease in[Ca2+]i.Thus bradykinin, thrombin, and AA induce increases in[Ca2+]iin Ehrlich cells due to Ca2+ entryand release from intracellular stores. Thrombin causes release ofCa2+ from an intracellular storethat is insensitive to bradykinin and is not depleted by thapsigarginbut is depleted by AA.

  相似文献   

18.
In smooth muscle, a Rho-regulated systemof myosin phosphatase exists; however, it has yet to be establishedwhether Rho kinase, one of the downstream effectors of Rho, mediatesthe regulation of myosin phosphatase activity in vivo. In the presentstudy, we demonstrate in permeabilized vascular smooth muscle cells(SMCs) that the vasodilator 1-(5-isoquinolinesulfonyl)-homopiperazine (HA-1077), which we show to be a potent inhibitor of Rho kinase, dosedependently inhibits Rho-mediated enhancement ofCa2+-induced 20-kDa myosin lightchain (MLC20) phosphorylationdue to abrogating Rho-mediated inhibition ofMLC20 dephosphorylation. By animmune complex phosphatase assay, we found that guanosine 5'-O-(3-thiotriphosphate)(GTPS) stimulation of permeabilized SMCs caused a decrease in myosinphosphatase activity with an increase in the extent of phosphorylationof the 130-kDa myosin-binding regulatory subunit (MBS) of myosinphosphatase in a Rho-dependent manner. HA-1077 abolished both of theRho-mediated events. Moreover, we observed that the pleckstrinhomology/cystein-rich domain protein of Rho kinase, a dominant negativeinhibitor of Rho kinase, inhibited GTPS-induced phosphorylation ofMBS. These results provide direct in vivo evidence that Rho kinasemediates inhibition of myosin phosphatase activity with resultantenhancement of MLC20phosphorylation in smooth muscle and reveal the usefulness of HA-1077as a Rho kinase inhibitor.

  相似文献   

19.
Cholinergic-muscarinic receptor agonists are used to alleviate mouth dryness, although the cellular signals mediating the actions of these agents on salivary glands have not been identified. We examined the activation of ERK1/2 by two muscarinic agonists, pilocarpine and carbachol, in a human salivary cell line (HSY). Immunoblot analysis revealed that both agonists induced transient activation of ERK1/2. Whereas pilocarpine induced phosphorylation of the epidermal growth factor (EGF) receptor, carbachol did not. Moreover, ERK activation by pilocarpine, but not carbachol, was abolished by the EGF receptor inhibitor AG-1478. Downregulation of PKC by prolonged treatment of cells with the phorbol ester PMA diminished carbachol-induced ERK phosphorylation but had no effect on pilocarpine responsiveness. Depletion of intracellular Ca2+ ([Ca2+]i) by EGTA did not affect ERK activation by either agent. In contrast to carbachol, pilocarpine did not elicit [Ca2+]i mobilization in HSY cells. Treatment of cells with the muscarinic receptor subtype 3 (M3) antagonist N-(3-chloropropyl)-4-piperidnyl diphenylacetate decreased ERK responsiveness to both agents, whereas the subtype 1 (M1) antagonist pirenzepine reduced only the carbachol response. Stimulation of ERKs by pilocarpine was also decreased by M3, but not M1, receptor small interfering RNA. The Src inhibitor PP2 blocked pilocarpine-induced ERK activation and EGF receptor phosphorylation, without affecting ERK activation by carbachol. Our results demonstrate that the actions of pilocarpine and carbachol in salivary cells are mediated through two distinct signaling mechanisms—pilocarpine acting via M3 receptors and Src-dependent transactivation of EGF receptors, and carbachol via M1/M3 receptors and PKC—converging on the ERK pathway. muscarinic receptor; epidermal growth factor receptor; protein kinase C  相似文献   

20.
Fibroblasts form fibers when grown inculture medium containing native type 1 collagen. The contractileforces generated can be precisely quantified and used to analyze thesignal transduction pathways regulating fibroblast contraction. Calfserum (30%) induces a sustained contraction that is accompanied by atransient increase in intracellular calcium([Ca2+]i). W-7, a calmodulin inhibitor,KN-62, an inhibitor of calcium/calmodulin-dependent protein kinase, andML-7, a myosin light-chain kinase inhibitor, had no effects on eitherthe contraction or the [Ca2+]i responses.Neither genistein, a tyrosine kinase inhibitor, nor calphostin C, aprotein kinase C inhibitor, had major effects on force or[Ca2+]i. In contrast, the Rho kinaseinhibitors(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) and HA1077 depressed the contraction in a dose-dependent manner without affecting the [Ca2+]iresponse. Stress fiber formation was also suppressed by Y-27632. Surprisingly, calf serum, Y-27632, and calf serum plus Y-27632 did notalter mono- or diphosphorylation of the myosin regulatory light chain(MRLC) compared with control untreated fibers. These results suggestthat the sustained contraction of NIH 3T3 fibroblast fibers induced bycalf serum is mediated by Rho kinase but is independent of a sustainedincrease in [Ca2+]i, calcium/calmodulin- orprotein kinase C-dependent pathways, or increases in MRLC phosphorylation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号